【題目】已知:如圖,直線的函數(shù)解析式為,與軸交于點(diǎn),與軸交于點(diǎn).
(1)直接寫出點(diǎn)的坐標(biāo)________;點(diǎn)的坐標(biāo)________;
(2)若點(diǎn)為線段上的一個動點(diǎn),作軸于點(diǎn),軸于點(diǎn),連接,問:①若的面積為,求關(guān)于的函數(shù)關(guān)系式;②直接寫出的最小值________;
【答案】(1),;(2)①(),②
【解析】
(1)令求出y的值,即可得到A的坐標(biāo),令求出x的值,即可得到B的坐標(biāo);
(2)①直接利用三角形的面積公式以及a,b之間的關(guān)系即可得到關(guān)于的函數(shù)關(guān)系式;
②易證四邊形PEOF是矩形,然后利用勾股定理得出,然后可得到的最小值,從而即可確定EF的最小值.
(1)令,,則點(diǎn)A的坐標(biāo)為;
令,即,解得,則點(diǎn)B的坐標(biāo)為;
(2)①連接PO,
∵點(diǎn)B的坐標(biāo)為,
∴.
∵點(diǎn)為線段上的一個動點(diǎn),
∴.
∵軸于點(diǎn),軸于點(diǎn),
∴,
∴();
②∵軸,軸,,
∴四邊形PEOF是矩形,
∴.
在中,
.
∵,
∴,
∴的最小值為20.
∵,
∴EF的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+3的對稱軸是x=1, 并且經(jīng)過點(diǎn)(-2,-5).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請你直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6,BC=8,點(diǎn)D是BC邊上的一個動點(diǎn),點(diǎn)E在AC邊上,∠ADE=∠B.設(shè)BD的長為x,CE的長為y.
(1)當(dāng)D為BC的中點(diǎn)時,求CE的長;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果△ADE為等腰三角形,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖像的一部分,其對稱軸是直線x=-1,且過點(diǎn)(-3,0),下列說法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是拋物在線兩點(diǎn),則y1>y2,其中正確的是( )
A.② B.②③ C.②④ D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省臺州市)在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根.比如對于方程,操作步驟是:
第一步:根據(jù)方程的系數(shù)特征,確定一對固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點(diǎn)A,另一條直角邊恒過點(diǎn)B;
第三步:在移動過程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時,點(diǎn)C的橫坐標(biāo)m即為該方程的一個實(shí)數(shù)根(如圖1);
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時,點(diǎn)D的橫坐標(biāo)n即為該方程的另一個實(shí)數(shù)根.
(1)在圖2中,按照“第四步”的操作方法作出點(diǎn)D(請保留作出點(diǎn)D時直角三角板兩條直角邊的痕跡);
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程的一個實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個固定點(diǎn)的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的實(shí)數(shù)根,請你直接寫出一對固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無數(shù)對,一般地,當(dāng)m1,n1,m2,n2與a,b,c之間滿足怎樣的關(guān)系時,點(diǎn)P(m1,n1),Q(m2,n2)就是符合要求的一對固定點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB與弦CD交于點(diǎn),AE=6,BE=2,CD=2,則∠AED的度數(shù)是( )
A. 30° B. 60° C. 45° D. 36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)該游戲是否公平?如果不公平,請修改游戲規(guī)則使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點(diǎn),過點(diǎn)P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com