【題目】春節(jié)即將來(lái)臨,某企業(yè)接到一批禮品生產(chǎn)任務(wù),約定這批禮品的出廠價(jià)為每件6元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人小王第x天生產(chǎn)的禮品數(shù)量為y件,y與x滿足如下關(guān)系:y=.
(1)小王第幾天生產(chǎn)的禮品數(shù)量為390件?
(2)如圖,設(shè)第x天生產(chǎn)的每件禮品的成本是z元,z與x之間的關(guān)系可用圖中的函數(shù)圖象來(lái)刻畫.若小王第x天創(chuàng)造的利潤(rùn)為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)﹣成本)
【答案】(1)第12天生產(chǎn)的禮品數(shù)量為390只;(2)w與x的函數(shù)表達(dá)式為w=,第18天利潤(rùn)最大,最大利潤(rùn)為1188元.
【解析】
(1)因?yàn)榍?/span>6天最多可生產(chǎn)禮品240只,所以把y=390代入y=25x+90,解方程即可求得;
(2)先根據(jù)圖象求得成本z與x之間的關(guān)系,然后根據(jù)利潤(rùn)等于出廠價(jià)減去成本價(jià),分0≤x≤6,6<x≤10,10<x≤20三種情況討論,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答.
(1)∵6×40=240,
∴前六天中第6天生產(chǎn)的禮品最多達(dá)到240只,
將390代入y=25x+90得:25x+90=390,
∴x=12,
答:第12天生產(chǎn)的禮品數(shù)量為390只;
(2)當(dāng)0≤x<10時(shí),z=3,
當(dāng)10≤x≤20時(shí),設(shè)z=kx+b,將(10,3)和(20,4)代入,
得
解得:,
∴z=x+2;
當(dāng)0≤x≤6時(shí),w=(6﹣3)×40x=120x,w隨x的增大而增大,
∴當(dāng)x=6時(shí)最大值為720元;
當(dāng)6<x≤10時(shí),w=(6﹣3)×(25x+90)=75x+270,w隨x的增大而增大,
∴當(dāng)x=10時(shí)最大值為1020元;
當(dāng)10<x≤20時(shí),w=(6﹣x﹣2)(25x+90)=﹣x2+91x+360,
∵對(duì)稱軸為:直線x=18,天數(shù)為整數(shù),
∴將x=18代入得w=1188元;
綜上所述,w與x的函數(shù)表達(dá)式為w=,
答:第18天利潤(rùn)最大,最大利潤(rùn)為1188元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰三角形ABC中,∠ABC=90°,D為AC邊上中點(diǎn),過(guò)D點(diǎn)作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,則EF的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)切圓⊙O與AB、BC、AC分別相切于D、E、F,若,如圖1.
(1)判斷的形狀,并證明你的結(jié)論;
(2)連接AE,若,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1;
(2)寫出△A1B1C1的頂點(diǎn)坐標(biāo);
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,tanB=3,點(diǎn)D為邊AB上一動(dòng)點(diǎn),在直線DC上方作∠EDC=∠ECD=∠B,得到△EDC,則CE最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)后與⊙O相切,則α的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):“頂點(diǎn)在圓上,兩邊與圓相交”,“同弧所對(duì)的圓周角相等”,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)補(bǔ)充完整:
定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對(duì)的一個(gè)圓外角.
(1)請(qǐng)?jiān)趫D2中畫出所對(duì)的一個(gè)圓內(nèi)角;
提出猜想
(2)通過(guò)多次畫圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;
問(wèn)題解決
經(jīng)過(guò)證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問(wèn)題.
(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo):
(3)在拋物線上存在點(diǎn)P(不與C重合),使得△APB的面積與△ACB的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)求拋物線頂點(diǎn)M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),求A、B、C的坐標(biāo)(點(diǎn)A在點(diǎn)B的左側(cè)),并畫出函數(shù)圖像的大致示意圖;
(3)根據(jù)圖像,寫出不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com