【題目】已知的內(nèi)切圓⊙O與AB、BC、AC分別相切于D、E、F,若,如圖1.
(1)判斷的形狀,并證明你的結(jié)論;
(2)連接AE,若,求AE的長.
【答案】(1)為等腰三角形,見解析;(2)
【解析】
(1)根據(jù)圓心角和弧的關(guān)系、切線的性質(zhì)和四邊形的內(nèi)角和易證得:,,,進一步即可進行判斷;
(2)先根據(jù)切線長定理和(1)題的結(jié)論得出CE=BE,再由等腰三角形的性質(zhì)可得AE⊥BC,然后由OE⊥BC說明A、O、E三點共線,再根據(jù)勾股定理即可求出結(jié)果.
解:(1)為等腰三角形.
證明:的內(nèi)切圓⊙O與AB、BC、AC分別相切于D、E、F,
,
四邊形內(nèi)角和是,,,
∵,,
,∴,
為等腰三角形;
(2)∵的內(nèi)切圓⊙O與AB、BC、AC分別相切于D、E、F,
∴AF=AD,CE=CF,BD=BE,
∵AC=AB,∴CF=BD,∴CE=BE,
連接AE,如圖,∴AE⊥BC,
又∵OE⊥BC,
∴AE過圓心O,
∵,
∴FC=CE=2,AC=6,
在直角△ACE中,由勾股定理得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣mx﹣3x+m﹣4=0(m為常數(shù))
(1)求證:方程有兩個不相等的實數(shù)根.
(2)設(shè)x1,x2是方程的兩個實數(shù)根,且x1+x2=4,請求出方程的這兩個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水庫大壩的橫截面是梯形,壩頂寬5米,CD的長為20米,斜坡AB的坡度i=1:2.5(i為坡比即BE:AE),斜坡CD的坡度i=1:2(i為坡比即CF:FD),求壩底寬AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6,BC=8,點D是BC邊上的一個動點,點E在AC邊上,∠ADE=∠B.設(shè)BD的長為x,CE的長為y.
(1)當(dāng)D為BC的中點時,求CE的長;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果△ADE為等腰三角形,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.
(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更好地踐行社會主義核心價值觀,讓同學(xué)們珍惜糧食,學(xué)會感恩.校學(xué)生會積極倡導(dǎo)“光盤行動”,某天午餐后學(xué)生會干部隨機調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學(xué)共有______名.
(2)補全條形統(tǒng)計圖.
(3)計算在扇形統(tǒng)計圖中剩一半飯菜所對應(yīng)扇形圓心角的度數(shù);
(4)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供40人用餐.據(jù)此估算,全校2000名學(xué)生一餐浪費的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,將△ABC繞點B逆時針旋轉(zhuǎn)60°得到△A′BC′,連接A′C,則A′C的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)即將來臨,某企業(yè)接到一批禮品生產(chǎn)任務(wù),約定這批禮品的出廠價為每件6元,按要求在20天內(nèi)完成.為了按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人小王第x天生產(chǎn)的禮品數(shù)量為y件,y與x滿足如下關(guān)系:y=.
(1)小王第幾天生產(chǎn)的禮品數(shù)量為390件?
(2)如圖,設(shè)第x天生產(chǎn)的每件禮品的成本是z元,z與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若小王第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC關(guān)于原點對稱的△A1B1C1;并寫出點A1,B1,C1的坐標.
(2)請畫出△ABC繞O順時針旋轉(zhuǎn)90°后的△A2B2C2,并寫出點A2,B2,C2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com