關(guān)于x的方程的解相同,則的值是(   )

A.4B.1C.0D.5

A

解析試題分析:先解出方程的解,再代入方程,即可求得結(jié)果.
由方程解得
代入方程,解得
故選A.
考點:本題考查的是方程的解的定義
點評:解答本題的關(guān)鍵是熟練掌握方程的解的定義:方程的解就是使方程左右兩邊相等的未知數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•隨州)在一次數(shù)學(xué)活動課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時觀察、點撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);
②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為B.當(dāng)△ABC為銳角三角形時,觀察圖象,直接寫出m的取值范圍.
請你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶在一次數(shù)學(xué)活動課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時觀察、點撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);
②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為B.當(dāng)△ABC為銳角三角形時,觀察圖象,直接寫出m的取值范圍.
請你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省中考真題 題型:解答題

在- 次數(shù)學(xué)活動課上,老師出了- 道題:
  (1) 解方程x2-2x-3=0.
     巡視后老師發(fā)現(xiàn)同學(xué)們解此題的方法有公式法、配方法和十字相乘法( 分解因式法) 。
   接著, 老師請大家用自己熟悉的方法解第二道題:
  (2) 解關(guān)于x 的方程mx2+(m -3)x -3=0(m 為常數(shù),且m ≠0).
     老師繼續(xù)巡視,及時觀察、點撥大家. 再接著, 老師將第二道題變式為第三道題:
(3) 已知關(guān)于x 的函數(shù)y=mx2+(m-3)x-3(m 為常數(shù)).
  ①求證:不論m 為何值, 此函數(shù)的圖象恒過x 軸、y 軸上的兩個定點( 設(shè)x 軸上的定點為A ,y 軸上的定點為C) ;    
   ②若m ≠0 時, 設(shè)此函數(shù)的圖象與x 軸的另一個交點為反B, 當(dāng)△ABC 為銳角三角形時, 求m 的取值范圍;當(dāng)△ABC 為鈍角三角形時,觀察圖象,直接寫出m 的取值范圍.
    請你也用自己熟悉的方法解上述三道題.    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在-次數(shù)學(xué)活動課上,老師出了-道題:

  (1)解方程x2-2x-3=0.

    巡視后老師發(fā)現(xiàn)同學(xué)們解此題的方法有公式法、配方法和十字相乘法(分解因式法)。

  接著,老師請大家用自己熟悉的方法解第二道題:

  (2)解關(guān)于x的方程mx2+(m一3)x一3=0(m為常數(shù),且m≠0).

    老師繼續(xù)巡視,及時觀察、點撥大家.再接著,老師將第二道題變式為第三道題:

(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù)).

 ①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);   

  ②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為反B,當(dāng)△ABC為銳角三角形時,求m的取值范圍;當(dāng)△ABC為鈍角三角形時,觀察圖象,直接寫出m的取值范圍.

   請你也用自己熟悉的方法解上述三道題.   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省隨州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

在一次數(shù)學(xué)活動課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時觀察、點撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);
②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為B.當(dāng)△ABC為銳角三角形時,觀察圖象,直接寫出m的取值范圍.
請你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

同步練習(xí)冊答案