【題目】在求值問題中,我們經(jīng)常遇到利用整體思想來解決問題.

例如1:已知:x+2y﹣3z=2,2x+y+6z=1,求:x+y+z的值

解:令x+2y﹣3z=2﹣﹣﹣﹣﹣①2x+y+6z=1﹣﹣﹣﹣﹣﹣②

①+②3x+3y+3z=3所以x+y+z=1

已知x+2y的值

解:①×2得:2x+2y=﹣10③

②﹣③得:x+2y=11

利用材料中提供的方法,解決下列問題

(1)已知:關(guān)于x,y的二元一次方程組 的解滿足x﹣y=6,求m的值

(2)某步行街?jǐn)[放有若干盆甲、乙、丙三種造型的盆景.甲種盆景由15朵紅花、24朵黃花和25朵紫花搭配而成,乙種盆景由10朵紅花和12朵黃花搭配而成,丙咱盆景由10朵紅花、18朵黃花和25朵紫花搭配而成.這些盆景一共用了2900朵紅花,3750朵紫花,求黃花一共用了多少朵?

【答案】(1)m=﹣16;(2)4380朵

【解析】

(1)利用②-①得:3x﹣3y=2﹣m,再根據(jù)x﹣y=6即可得出結(jié)論;

(2)設(shè)該步行街?jǐn)[放了a盆甲種盆景,b盆乙種盆景,c盆丙種盆景,根據(jù)題意列出方程組求解即可.

解:(1)令x﹣3y=2m﹣3①,4x﹣6y=m﹣1②,

②﹣①得:3x﹣3y=2﹣m.

∵x﹣y=6,

∴2﹣m=18,

∴m=﹣16.

(2)設(shè)該步行街?jǐn)[放了a盆甲種盆景,b盆乙種盆景,c盆丙種盆景,

根據(jù)題意得:,

①×5得:75a+50b+50c=14500③,

②+③得:100a+50b+75c=18250,

∴24a+12b+18c=(100a+50b+75c)=4380.

答:黃花一共用了4380朵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)單項式﹣2x3ym5xn+1y的差是一個單項式,求的值;

(2)化簡求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別為平行四邊形ABCD的對邊ADBC上的點,且DE=BFEM⊥ACM,FN⊥ACN,EFAC于點O,

求證:(1EM=FN;

2EFMN互相平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為﹣20,B點對應(yīng)的數(shù)為100.

(1)請寫出與A,B兩點距離相等的點M所對應(yīng)的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).

(3)若當(dāng)電子螞蟻PB點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖甲是任意一個直角三角形ABC,它的兩條直角邊的長分別為a,b,斜邊長為c.如圖乙、丙那樣分別取四個與直角三角形ABC全等的三角形,放在邊長為ab的正方形內(nèi).

(1)圖乙、圖丙中①②③都是正方形.由圖可知:①是以________為邊長的正方形,②是以________為邊長的正方形,③是以________為邊長的正方形;

(2)圖乙中①的面積為________,②的面積為________,圖丙中③的面積為________

(3)圖乙中①②面積之和為__________;

(4)圖乙中①②的面積之和與圖丙中正方形③的面積有什么關(guān)系?為什么?由此你能得到關(guān)于直角三角形三邊長的關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一.為了倡導(dǎo)節(jié)約用水從我做起,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計圖

1】求這10個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

2】根據(jù)樣本數(shù)據(jù),估計小剛所在班50名同學(xué)家庭中月均用水量不超過7 t的約有多少戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4). (Ⅰ)請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(Ⅱ)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在圖中y軸右側(cè),畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列方程的特征及其解的特點.

x=-3的解為x1=-1,x2=-2;

x=-5的解為x1=-2,x2=-3;

x=-7的解為x1=-3,x2=-4.

解答下列問題:

(1)請你寫出一個符合上述特征的方程為________,其解為________

(2)根據(jù)這類方程的特征,寫出第n個方程為________,其解為________;

(3)請利用(2)的結(jié)論,求關(guān)于x的方程x=-2(n+2)(其中n為正整數(shù))的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,AE平分∠CABCD于點E.若∠C比∠AED55°,則∠AED的度數(shù)為(  )

A. 55° B. 125° C. 135° D. 140°

查看答案和解析>>

同步練習(xí)冊答案