【題目】如圖,四邊形內(nèi)接于⊙,點在上,,過點作⊙的切線,分別交,的延長線于點,.
(1)求證:;
(2)若,,求的長.
【答案】(1)證明見解析;(2)AD,詳情見解析;
【解析】
(1)連接OC,如圖,先證明OC∥AF,再根據(jù)切線的性質(zhì)得OC⊥EF,從而得到AF⊥EF;
(2)先利用OC∥AF得到∠COE=∠DAB,在Rt△OCE中,設(shè)OC=r,利用余弦的定義得到,解得r=4,連接BD,如圖,根據(jù)圓周角定理得到∠ADB=90°,然后根據(jù)余弦的定義可計算出AD的長.
(1)證明:連接OC,
∵CD=BD,
∴弧CD=弧BC,
∴∠1=∠2,
∵OA=OC,
∴∠2=∠OCA,
∴∠1=∠OCA,
∴OC∥AF,
∵EF為切線,
∴OC⊥EF,
∴AF⊥EF;
(2)∵OC∥AF,
∴∠COE=∠DAB,
在Rt△OCE中,設(shè)OC=r,
∵cos∠COE=cos∠DAB=,
即,
解得r=4,
連接BD,如圖,
∵AB為直徑,
∴∠ADB=90°,
在Rt△ADB中,cos∠DAB=,
∴AD;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:在數(shù)學(xué)課上,老師提出如下問題:
已知:如圖,CD是△ABC的高,
尺規(guī)作圖:在線段CD上求作點P,使∠APB=45°(保留作圖痕跡,寫出作法),
請回答:你推出∠APB=45°的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小正方形組成網(wǎng)格圖中,四邊形 ABCD 的頂點都在格點上,如圖所示.則下列結(jié)論錯 誤的是( )
A.B.
C.四邊形是菱形D.將邊向右平移格,再向上平移格就與邊重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長、寬均為3,高為8的長方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長進行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點和(半徑為),給出如下定義:若點關(guān)于點的對稱點為,且,則稱點為的稱心點.
(1)當(dāng)的半徑為2時,
①如圖1,在點,,中,的稱心點是 ;
②如圖2,點在直線上,若點是的稱心點,求點的橫坐標(biāo)的取值范圍;
(2)的圓心為,半徑為2,直線與軸,軸分別交于點,.若線段上的所有點都是的稱心點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)今“微信運動”被越來越多的人關(guān)注和喜愛,某數(shù)學(xué)興趣小組隨機調(diào)查了我市名教師某日“微信運動”中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
請根據(jù)以上信息,解答下列問題:
(1)寫出,,,的值并補全頻數(shù)分布直方圖;
(2)我市約有名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過步(包含步)的教師有多少名?
(3)若在名被調(diào)查的教師中,選取日行走步數(shù)超過步(包含步)的兩名教師與大家分享心得,用樹形圖或列表法求被選取的兩名教師恰好都在步(包含步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館共有80間客房.賓館負責(zé)人根據(jù)經(jīng)驗作出預(yù)測:今年7月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為5000元,有客人入住的房間,賓館每天每間另外還需支出28元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠,應(yīng)將房間定價確定為( 。
A.252元/間B.256元/間C.258元/間D.260元/間
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com