【題目】如圖,已知△ABC

1)實(shí)踐與操作:

利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法)

BC邊上的高AD;

作△ABC的角平分線BE;

2)綜合與運(yùn)用;

若△ABC中,ABAC且∠CAB36°,

請(qǐng)根據(jù)作圖和已知寫出符合括號(hào)內(nèi)要求的正確結(jié)論;

結(jié)論1   ;(關(guān)于角)

結(jié)論2   ;(關(guān)于線段)

結(jié)論3   .(關(guān)于三角形)

【答案】1①②如圖,見解析;(2)∠ABE=∠CBE=∠CAB36°,∠BAD=∠CAD(關(guān)于角);BDDCAEBE,BCBE(關(guān)于線段);△ABE,△BCE都是等腰三角形(關(guān)于三角形).

【解析】

1)①按照過直線外一點(diǎn)作直線的垂線步驟作即可;②按照作一個(gè)角的平分線的作法來做即可.

2)根據(jù)等腰三角形的判定與性質(zhì)結(jié)合(1)中的圖形即可求解.

1①②如圖:

2)∵ABAC且∠CAB36°,

∴∠ABC=∠C72°,

BE是△ABC的角平分線,

∴∠ABE=∠CBE36°,

∴∠ABE=∠CBE=∠CAB36°.

ADBC邊上的高,ABAC

BDDC,∠BAD=∠CAD

∵∠EAB=∠ABE36°,∠C=∠CEB72°,

AEBE,BCBE,

∴△ABE,△BCE都是等腰三角形.

則結(jié)論1:∠ABE=∠CBE=∠CAB36°,∠BAD=∠CAD(關(guān)于角);

結(jié)論2BDDCAEBEBCBE(關(guān)于線段);

結(jié)論3:△ABE,△BCE都是等腰三角形(關(guān)于三角形).

故答案為∠ABE=∠CBE=∠CAB36°,∠BAD=∠CAD(關(guān)于角);BDDCAEBE,BCBE(關(guān)于線段);△ABE,△BCE都是等腰三角形(關(guān)于三角形).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小宇設(shè)計(jì)了一個(gè)隨機(jī)碰撞模擬器:在模擬器中有,,三種型號(hào)的小球,它們隨機(jī)運(yùn)動(dòng),當(dāng)兩個(gè)小球相遇時(shí)會(huì)發(fā)生碰撞(不考慮多個(gè)小球相撞的情況).若相同型號(hào)的兩個(gè)小球發(fā)生碰撞,會(huì)變成一個(gè)型小球;若不同型號(hào)的兩個(gè)小球發(fā)生碰撞,則會(huì)變成另外一種型號(hào)的小球,例如,一個(gè)型小球和一個(gè)型小球發(fā)生碰撞,會(huì)變成一個(gè)型小球.現(xiàn)在模擬器中有型小球12個(gè),型小球9個(gè),型小球10個(gè),如果經(jīng)過各種兩兩碰撞后,最后只剩一個(gè)小球.以下說法:

①最后剩下的小球可能是型小球;

②最后剩下的小球一定是型小球;

③最后剩下的小球一定不是型小球.

其中正確的說法是:(

A.B.②③C.D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AM上有一點(diǎn)B,AB6.點(diǎn)C是射線AM上異于B的一點(diǎn),過CCDAM,且CDAC.過D點(diǎn)作DEAD,交射線AME. 在射線CD取點(diǎn)F,使得CFCB,連接AF并延長(zhǎng),交DE于點(diǎn)G.設(shè)AC3x

1 當(dāng)CB點(diǎn)右側(cè)時(shí),求ADDF的長(zhǎng).(用關(guān)于x的代數(shù)式表示)

2)當(dāng)x為何值時(shí),△AFD是等腰三角形.

3)若將△DFG沿FG翻折,恰使點(diǎn)D對(duì)應(yīng)點(diǎn)落在射線AM上,連接,.此時(shí)x的值為 (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC=90°,AB=2AC,點(diǎn)A(2,0)、B(0,4),點(diǎn)C在第一象限內(nèi),雙曲線y=x>0)經(jīng)過點(diǎn)C.將ABC沿y軸向上平移m個(gè)單位長(zhǎng)度,使點(diǎn)A恰好落在雙曲線上,則m的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC,∠C90°,DBC的中點(diǎn),以AC為直徑的⊙OAB于點(diǎn)E

1)求證:DE是⊙O的切線;

2)若AEEB12,BC12,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋中裝有標(biāo)著數(shù)字2,3,454個(gè)小球,這4個(gè)小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機(jī)摸出兩個(gè)小球,這兩個(gè)小球上的數(shù)字之積大于9的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)如圖1,在中,,,連接交于點(diǎn).填空:①的值為______;②的度數(shù)為______

2)類比探究如圖2,在中,,,連接的延長(zhǎng)線于點(diǎn).請(qǐng)判斷的值及的度數(shù),并說明理由;

3)拓展延伸在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn),若,,請(qǐng)直接寫出當(dāng)點(diǎn)與點(diǎn)在同一條直線上時(shí)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)OE為邊AB上一點(diǎn),且BE = 2AE.設(shè),

1)填空:向量 ;

2)如果點(diǎn)F是線段OC的中點(diǎn),那么向量 ,并在圖中畫出向量在向量方向上的分向量.

注:本題結(jié)果用向量的式子表示.畫圖不要求寫作法,但要指出所作圖中表示結(jié)論的向量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,李林和王聰兩人在玩轉(zhuǎn)盤游戲時(shí),分別把轉(zhuǎn)盤,分成3等份和4等份,并標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)兩轉(zhuǎn)盤停止后,若指針?biāo)竷蓚(gè)數(shù)字之和小于4,則李林獲勝;若數(shù)字之和大于4,則王聰獲勝,如果指針落在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.

1)用列表法或畫樹狀圖法中的一種方法,求所有可能出現(xiàn)的結(jié)果.

2)該游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案