【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O為圓心,以OA為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長(zhǎng)線(xiàn)上取點(diǎn)F,使得BF=EF.
(1)判斷直線(xiàn)EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長(zhǎng).
【答案】(1)EF是⊙O的切線(xiàn),理由詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)⊙O的半徑的長(zhǎng)為2.
【解析】
(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到結(jié)論;
(2)根據(jù)含30°的直角三角形的性質(zhì)證明即可;
(3)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得
∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.
解:(1)連接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切線(xiàn);
(2)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直徑,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵陰影部分的面積
解得:r2=4,即r=2,
即⊙O的半徑的長(zhǎng)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】班級(jí)組織同學(xué)乘大巴車(chē)前往“研學(xué)旅行”基地開(kāi)展愛(ài)國(guó)教育活動(dòng),基地離學(xué)校有90公里,隊(duì)伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車(chē)以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊(duì)伍提前15分鐘到達(dá)基地.問(wèn):
(1)大巴與小車(chē)的平均速度各是多少?
(2)蘇老師追上大巴的地點(diǎn)到基地的路程有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)該班共有_____名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動(dòng),有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F為菱形ABCD對(duì)角線(xiàn)上的兩點(diǎn),∠ADE=∠CDF,要判定四邊形BFDE是正方形,需添加的條件是( )
A.AE=CFB.OE=OFC.∠EBD=45°D.∠DEF=∠BEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)(>0)與軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn)C。
(1)如圖1,若△ABC為直角三角形,求的值;
(2)如圖1,在(1)的條件下,點(diǎn)P在拋物線(xiàn)上,點(diǎn)Q在拋物線(xiàn)的對(duì)稱(chēng)軸上,若以BC為邊,以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)A作直線(xiàn)BC的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)D,交軸交于點(diǎn)E,若AE:ED=1:4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(1,0),B(0,2)兩點(diǎn),頂點(diǎn)為D.
(1)求拋物線(xiàn)的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)B落到點(diǎn)C的位置,將拋物線(xiàn)沿y軸平移后經(jīng)過(guò)點(diǎn)C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線(xiàn)與y軸的交點(diǎn)為B1,頂點(diǎn)為D1,若點(diǎn)N在平移后的拋物線(xiàn)上,且滿(mǎn)足△NBB1的面積是△NDD1面積的2倍,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將沿著過(guò)中點(diǎn)的直線(xiàn)折疊,使點(diǎn)落在邊上的處,稱(chēng)為第1次操作,折痕到的距離記為,還原紙片后,再將沿著過(guò)中點(diǎn)的直線(xiàn)折疊,使點(diǎn)落在邊上的處,稱(chēng)為第2次操作,折痕到的距離記為,按上述方法不斷操作下去…經(jīng)過(guò)第2020次操作后得到的折痕到的距離記為,若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“今有邑,東西七里,南北九里,各開(kāi)中門(mén),出東門(mén)一十五里有木,問(wèn):出南門(mén)幾何步而見(jiàn)木?”這段話(huà)摘自《九章算術(shù)》.意思是說(shuō):如圖,矩形城池ABCD,東邊城墻AB長(zhǎng)9里,南邊城墻AD長(zhǎng)7里,東門(mén)點(diǎn)E、南門(mén)點(diǎn)F分別是AB、AD中點(diǎn),EG⊥AB,FH⊥AD,EG=15里,HG經(jīng)過(guò)A點(diǎn),則FH=( )
A.1.2 里B.1.5 里C.1.05 里D.1.02 里
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com