已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,cosC=時(shí),求⊙O的半徑.
(1)通過證明OM⊥AE即可證明AE與⊙O相切。
(2)半徑為
【解析】
試題分析:(1)證明:連接OM,則OM=OB
∴∠1=∠2
∵BM平分∠ABC
∴∠1=∠3
∴∠2=∠3
∴OM∥BC
∴∠AMO=∠AEB
在△ABC中,AB=AC,AE是角平分線
∴AE⊥BC
∴∠AEB=90°
∴∠AMO=90°
∴OM⊥AE
∵點(diǎn)M在圓O上,
∴AE與⊙O相切;
(2)解:在△ABC中,AB=AC,AE是角平分線
∴BE=BC,∠ABC=∠C
∵BC=4,cos C=
∴BE=2,cos∠ABC=
在△ABE中,∠AEB=90°
∴AB=
=6
設(shè)⊙O的半徑為r,則AO=6-r
∵OM∥BC
∴△AOM∽△ABE
∴=
∴=
解得r=
∴⊙O的半徑為
考點(diǎn):切線判定 等腰三角的性質(zhì) 相似三角形的判定和性質(zhì) 解直角三角形
點(diǎn)評:此題是綜合題,考查等腰三角形,平行線,角平分線,直線和圓的位置關(guān)系,相似三角形等知識點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com