【題目】正方形ABCD的CD邊長作等邊△DCE,AC和BE相交于點(diǎn)F,連接DF.求∠AFD的度數(shù).

【答案】解:在正方形ABCD和等邊三角形DCE中,

∴CB=CD=CE,∠BCD=90°,∠DCE=60°,

∴△BCE是等腰三角形,且∠BCE=90°+60°=150°,

∴∠CBE=15°,

在△BCF和△DCF中,

∴△BCF≌△DCF(SAS),

∴∠CBF=∠CDF=15°,

∴∠AFD=∠CDF+∠FCD=15°+45°=60°


【解析】根據(jù)等邊三角形和正方形的性質(zhì)證明△BCF≌△DCF,可得結(jié)論.
【考點(diǎn)精析】本題主要考查了等邊三角形的性質(zhì)和正方形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了   名學(xué)生;

(2)將圖1、圖2補(bǔ)充完整;

(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為確保信息安全,在傳輸時(shí)往往需加密,發(fā)送方發(fā)出一組密碼ab,c時(shí),則接收方對應(yīng)收到的密碼為A,B,C.雙方約定:A=2a﹣bB=2b,C=b+c,例如發(fā)出12,3,則收到0,4,5

1)當(dāng)發(fā)送方發(fā)出一組密碼為23,5時(shí),則接收方收到的密碼是多少?

2)當(dāng)接收方收到一組密碼28,11時(shí),則發(fā)送方發(fā)出的密碼是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最近幾年,某市持續(xù)大面積霧霾天氣讓環(huán)保和健康問題成為焦點(diǎn),為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,調(diào)查結(jié)果共分為四個(gè)等組A.非常了解;B.比較了解;C.基本了解;D.不了解

根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的三種統(tǒng)計(jì)圖表.

對霧霾天氣了解程度的

條形統(tǒng)計(jì)圖

對霧霾天氣了解程度的

扇形統(tǒng)計(jì)圖

對霧霾天氣了解程度的

統(tǒng)計(jì)表

1

2

對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結(jié)合統(tǒng)計(jì)圖表,回答下列問題:

(1)本次參與調(diào)查的學(xué)生選擇“A.非常了解的人數(shù)為__________人,m=__________,n=__________;

(2)請?jiān)趫D1中補(bǔ)全條形統(tǒng)計(jì)圖;

(3)請計(jì)算在圖2所示的扇形統(tǒng)計(jì)圖中,D部分扇形所對應(yīng)的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BEAD交于點(diǎn)F

⑴求證:ΔABF≌ΔEDF;

⑵將折疊的圖形恢復(fù)原狀,點(diǎn)FBC邊上的點(diǎn)G正好重合,連接DG,若AB=6,BC=8,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為5,∠ABC=120°,則此菱形ABCD的面積是(
A.20
B.25
C.
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)

(3)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程(x120的解是( 。

A.x10,x21B.x11,x2=﹣1C.x1x21D.x1x2=﹣1

查看答案和解析>>

同步練習(xí)冊答案