【題目】某書(shū)店響應(yīng)國(guó)家“中華優(yōu)秀傳統(tǒng)文化經(jīng)典進(jìn)書(shū)店”的號(hào)召,用2100元購(gòu)進(jìn)某經(jīng)典讀本若干套,很快售完,該店又用4500元購(gòu)進(jìn)第二批該經(jīng)典讀本若干套,進(jìn)貨量是第一批的2倍,但每套的進(jìn)價(jià)比第一批提高了10元.求:
(1)該店這兩批經(jīng)典讀本各購(gòu)進(jìn)多少套?
(2)若第一批該經(jīng)典讀本的售價(jià)是170元套,該店經(jīng)理想讓這兩批經(jīng)典讀本售完后的總利潤(rùn)不低于1950元,則第二批該經(jīng)典讀本每套至少要售多少元?
【答案】(1) 第一批經(jīng)典讀本購(gòu)進(jìn)15套,第二批購(gòu)進(jìn)30套;(2) 200元.
【解析】
(1)設(shè)第一批經(jīng)典讀本購(gòu)進(jìn)x套,則第二批購(gòu)進(jìn)2x套,再根據(jù)等量關(guān)系:第二批進(jìn)貨量是第一批的2倍可得方程;
(2)設(shè)第二批該經(jīng)典讀本每套售價(jià)為y元,由利潤(rùn)=售價(jià)-進(jìn)價(jià),這兩批經(jīng)典讀本售完后的總利潤(rùn)不低于1950元,可列不等式求解.
解:(1)設(shè)第一批經(jīng)典讀本購(gòu)進(jìn)x套,則第二批購(gòu)進(jìn)2x套,
根據(jù)題意得:
解得:x=15,
經(jīng)檢驗(yàn),x=15是原方程的解,
∴2x=30.
答:第一批經(jīng)典讀本購(gòu)進(jìn)15套,第二批購(gòu)進(jìn)30套.
(2)設(shè)第二批該經(jīng)典讀本每套售價(jià)為y元,
根據(jù)題意得:
解得:y≥200.
答:第二批該經(jīng)典讀本每套至少要售200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)某種茶壺、茶杯共200個(gè)進(jìn)行銷(xiāo)售,其中茶杯的數(shù)量是茶壺?cái)?shù)量的5倍還多20個(gè).銷(xiāo)售方式有兩種:(1)單個(gè)銷(xiāo)售;(2)成套銷(xiāo)售.相關(guān)信息如下表:
進(jìn)價(jià)(元/個(gè)) | 單個(gè)售價(jià)(元/個(gè)) | 成套售價(jià)(元/套) | |
茶壺 | 24 | a | 55 |
茶杯 | 4 | a﹣30 | |
備注:(1)一個(gè)茶壺和和四個(gè)茶杯配成一套(如圖); (2)利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×數(shù)量 |
(1)該商店購(gòu)進(jìn)茶壺和茶杯各有多少個(gè)?
(2)已知甲顧客花180元購(gòu)買(mǎi)的茶壺?cái)?shù)量與乙顧客花30元購(gòu)買(mǎi)的茶杯數(shù)量相同.
①求表中a的值.
②當(dāng)該商店還剩下20個(gè)茶壺和100個(gè)茶杯時(shí),商店將這些茶壺和茶杯中的一部分按成套銷(xiāo)售,其余按單個(gè)銷(xiāo)售,這120個(gè)茶壺和茶杯全部售出后所得的利潤(rùn)為365元.問(wèn)成套銷(xiāo)售了多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、D、C、F在同一條直線(xiàn)上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=( )
A.a+b
B.a﹣2b
C.a﹣b
D.3a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D 為 AB的中點(diǎn).
(1)如果點(diǎn) P 在線(xiàn)段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線(xiàn)段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).
①若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過(guò) 1 秒后,△BPD 與△CQP 是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD 與△CQP 全等?
(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來(lái)的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線(xiàn)上直接寫(xiě)出答案,不必書(shū)寫(xiě)解題過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3在射線(xiàn)ON上,點(diǎn)B1、B2、B3…在射線(xiàn)OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y= x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線(xiàn)AC下方拋物線(xiàn)上的動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)P且與y軸平行的直線(xiàn)l與直線(xiàn)AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線(xiàn)的頂點(diǎn)時(shí),在直線(xiàn)AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形ABC中,AB=AC,D是底邊上的中點(diǎn),BE垂直AC于點(diǎn)E,①∠ABC=∠ACB;②AD⊥BC;③∠BAD=∠CBE;④AB=2BD,其中正確的有___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com