【題目】如圖所示,在平面直角坐標(biāo)系中,A-1,5)、B-10)、C-43).

1)直接寫出ABC 的面積為 ;

2)在圖形中作出ABC 關(guān)于y 軸的對(duì)稱圖形△A1B1C1,并直接寫出△A1B1C1的三個(gè)頂點(diǎn)的坐標(biāo):A1 ),B1 ),C1 );

3)是否存在一點(diǎn) P ACAB 的距離相等,同時(shí)到點(diǎn) A、點(diǎn) B 的距離也相等.若存在保留作圖痕跡標(biāo)出點(diǎn) P 的位置,并簡(jiǎn)要說明理由;若不存在,請(qǐng)說明理由.

【答案】17.5;(2)作圖見解析,(1,5)、(1,0)、(4,3);(3)答案見解析.

【解析】

1)根據(jù)三點(diǎn)的坐標(biāo)作出△ABC,再根據(jù)三角形的面積公式求解可得;

2)分別作出點(diǎn)A、B、C關(guān)于y軸的對(duì)稱點(diǎn),再順次連接即可得;

3)根據(jù)已知條件知點(diǎn)P為∠CAB平分線與線段AB的垂直平分線的交點(diǎn),據(jù)此作圖可得.

1)如圖,SABC5×3=7.5;

2)如圖所示,△A1B1C1即為所求,A115)、B11,0)、C14,3);

3)如圖所示,點(diǎn)P即為所求.

∵點(diǎn)PAC、AB的距離相等,∴點(diǎn)P在∠CAB平分線上.

∵到點(diǎn)A、點(diǎn)B的距離也相等,∴點(diǎn)P在線段AB的垂直平分線上,∴點(diǎn)P為∠CAB平分線與線段AB的垂直平分線的交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的數(shù)分別為a,b,且a,b滿足|a+20|=﹣b﹣132,點(diǎn)C對(duì)應(yīng)的數(shù)為16,點(diǎn)D對(duì)應(yīng)的數(shù)為﹣13

1)求a,b的值;

2)點(diǎn)A,B沿?cái)?shù)軸同時(shí)出發(fā)相向勻速運(yùn)動(dòng),點(diǎn)A的速度為6個(gè)單位/秒,點(diǎn)B的速度為2個(gè)單位/秒,若t秒時(shí)點(diǎn)A到原點(diǎn)的距離和點(diǎn)B到原點(diǎn)的距離相等,求t的值;

3)在(2)的條件下,點(diǎn)A,B從起始位置同時(shí)出發(fā).當(dāng)A點(diǎn)運(yùn)動(dòng)到點(diǎn)C時(shí),迅速以原來的速度返回,到達(dá)出發(fā)點(diǎn)后,又折返向點(diǎn)C運(yùn)動(dòng).B點(diǎn)運(yùn)動(dòng)至D點(diǎn)后停止運(yùn)動(dòng),當(dāng)B停止運(yùn)動(dòng)時(shí)點(diǎn)A也停止運(yùn)動(dòng).求在此過程中,A,B兩點(diǎn)同時(shí)到達(dá)的點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,BOC=80°,OE是∠BOC的角平分線,OFOE的反向延長(zhǎng)線.

(1)求∠2、3的度數(shù);

(2)說明OF平分∠AOD的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△DCE有公共頂點(diǎn)C,AB=CD,BC=CE,∠ABC=DCE=90°.

1)如圖1,當(dāng)點(diǎn)DBC延長(zhǎng)線上時(shí).

①求證:△ABC≌△DCE.

②判斷ACDE的位置關(guān)系,并說明理由.

2)如圖2,△CDE從(1)中位置開始繞點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D落在BC邊上時(shí)停止.

①若∠A=60°,記旋轉(zhuǎn)的度數(shù)為,當(dāng)為何值時(shí),DE與△ABC一邊平行.

②如圖3,若AB=c, BC=a, AC=b, a>c,邊BCDE交于點(diǎn)F,求整個(gè)運(yùn)動(dòng)過程中,FBC上的運(yùn)動(dòng)路程(用含a, b, c的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=45°,CDAB于點(diǎn)D,BE平分∠ABC,且BEAC于點(diǎn)E,與CD相交于點(diǎn)F,H是邊BC的中點(diǎn),連接 DH BE相交于點(diǎn) G,若GE=3,則BF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OPAD,OPAB的延長(zhǎng)線交于點(diǎn)P,過B點(diǎn)的切線交OP于點(diǎn)C.

(1)求證:∠CBP=ADB.

(2)若OA=2,AB=1,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.

(1)求坡底C點(diǎn)到大樓距離AC的值;

(2)求斜坡CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程: =-1; (2)解不等式組:

查看答案和解析>>

同步練習(xí)冊(cè)答案