【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

【答案】B

【解析】h<2、2≤h≤5h>5三種情況考慮:當(dāng)h<2時(shí),根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當(dāng)2≤h≤5時(shí),由此時(shí)函數(shù)的最大值為0與題意不符,可得出該情況不存在;當(dāng)h>5時(shí),根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.

如圖,當(dāng)h<2時(shí),有﹣(2﹣h)2=﹣1,

解得:h1=1,h2=3(舍去);

當(dāng)2≤h≤5時(shí),y=﹣(x﹣h)2的最大值為0,不符合題意;

當(dāng)h>5時(shí),有﹣(5﹣h)2=﹣1,

解得:h3=4(舍去),h4=6,

綜上所述:h的值為16,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開(kāi)始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A-1,5)、B-1,0)、C-43).

1)直接寫出ABC 的面積為 ;

2)在圖形中作出ABC 關(guān)于y 軸的對(duì)稱圖形△A1B1C1,并直接寫出△A1B1C1的三個(gè)頂點(diǎn)的坐標(biāo):A1 ),B1 ),C1 );

3)是否存在一點(diǎn) P AC、AB 的距離相等,同時(shí)到點(diǎn) A、點(diǎn) B 的距離也相等.若存在保留作圖痕跡標(biāo)出點(diǎn) P 的位置,并簡(jiǎn)要說(shuō)明理由;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD中,A1,3, B2,-1, C5,-5

1D的坐標(biāo)為____________.

2)若經(jīng)過(guò)原點(diǎn)的一條直線平分□ABCD的面積,求此直線的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將長(zhǎng)為,寬為的長(zhǎng)方形白紙,按圖示方法粘合起來(lái),粘合部分寬為

1)根據(jù)圖示,將下表補(bǔ)充完整;

白紙張數(shù)

1

2

3

4

5

紙條長(zhǎng)度/

40

110

145

2)設(shè)張白紙粘合后的總長(zhǎng)度為,求之間的關(guān)系式;

3)將若干張白紙按上述方式粘合起來(lái),你認(rèn)為總長(zhǎng)度可能為嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+3x軸、y軸相交于A、B兩點(diǎn),點(diǎn)C在線段OA上,將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CD,此時(shí)點(diǎn)D恰好落在直線AB上,過(guò)點(diǎn)DDEx軸于點(diǎn)E

1)求證:△BOC≌△CED;

2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當(dāng)B'C'經(jīng)過(guò)點(diǎn)D時(shí),求△BCD平移的距離及點(diǎn)D的坐標(biāo);

3)若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以C、D、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M是正方形ABCDCD上一點(diǎn),連接AM,作DEAM于點(diǎn)E,BFAM于點(diǎn)F,連接BE.

(1)求證:AE=BF;

(2)已知AF=2,四邊形ABED的面積為24,求∠EBF的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,Rt△ABC中,C=90.

1)當(dāng)B=60時(shí),=_______;當(dāng)A=45時(shí),=_______.

2)當(dāng)B=2∠A時(shí),求的值;

3)若AB=2BC,求A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過(guò)A作半圓的切線,與半圓相切于F點(diǎn),與DC相交于E點(diǎn),則△ADE的面積為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案