【題目】如圖,△ABC與△DCE有公共頂點(diǎn)C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如圖1,當(dāng)點(diǎn)D在BC延長(zhǎng)線上時(shí).
①求證:△ABC≌△DCE.
②判斷AC與DE的位置關(guān)系,并說(shuō)明理由.
(2)如圖2,△CDE從(1)中位置開(kāi)始繞點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D落在BC邊上時(shí)停止.
①若∠A=60°,記旋轉(zhuǎn)的度數(shù)為,當(dāng)為何值時(shí),DE與△ABC一邊平行.
②如圖3,若AB=c, BC=a, AC=b, a>c,邊BC,DE交于點(diǎn)F,求整個(gè)運(yùn)動(dòng)過(guò)程中,F在BC上的運(yùn)動(dòng)路程(用含a, b, c的代數(shù)式表示)
【答案】(1)①見(jiàn)解析;②AC⊥DE,理由見(jiàn)解析;(2)①60°或90°或150°
②
【解析】
(1)①由邊角邊可證全等;
②延長(zhǎng)AC與DE交于M,由△ABC≌△DCE得∠ACB=∠E,利用等角的余角相等可證結(jié)論.
(2)①根據(jù)題意,作出符合條件的三種情況,易得旋轉(zhuǎn)角度.
②根據(jù)題意,作出F的最終位置,即可得出運(yùn)動(dòng)路徑.
(1)①證明:在△ABC和△DCE中,
∴△ABC≌△DCE(SAS)
AC⊥DE,理由如下:
如圖所示,延長(zhǎng)AC與DE交于M,
∵△ABC≌△DCE
∴∠ACB=∠E,
又∵∠ACB=∠DCM,∠E+∠D=90°
∴∠DCM+∠D=90°,
∴∠CMD=90°
即AC⊥DE.
(2)由題意可得,∠D=∠A=60°,∠E=∠ACB=30°,
(i)當(dāng)DE∥BC時(shí),如下圖所示,
∵DE∥BC,
∴∠BCE=∠E=30°,
所以旋轉(zhuǎn)角度=90°-30°=60°
(ii)當(dāng)DE∥AC時(shí),如下圖所示,此時(shí)BC和CE重合,
由圖可知,=∠BCD=90°
(iii)當(dāng)DE∥AB時(shí),如下圖所示,
∵DE∥AB,AB⊥BC
∴DE⊥BC,
∴∠BCE=90°-30°=60°
∴=90°+∠BCE=150°
綜上,為60°或90°或150°.
②由題意可得,F點(diǎn)從B點(diǎn)開(kāi)始運(yùn)動(dòng)到圖1中點(diǎn)所示位置,然后再繼續(xù)運(yùn)動(dòng),返回到圖2中F點(diǎn)重合,
B點(diǎn)的運(yùn)動(dòng)路程為:
圖1 圖2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民使用自來(lái)水按如下標(biāo)準(zhǔn)收費(fèi)(水費(fèi)按月繳納)
月用水量 | 單價(jià) |
不超過(guò)的部分 | 元 |
超過(guò)但不超過(guò)的部分 | 元 |
超過(guò)的部分 | 元 |
(1)當(dāng)時(shí),某用戶用了水,求該用戶這個(gè)月應(yīng)該繳納的水費(fèi);
(2)設(shè)某用戶用水量為立方米,求該用戶應(yīng)繳納的水費(fèi)(用含的式子表達(dá))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門(mén)出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門(mén).
(1)以景區(qū)大門(mén)為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.
(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開(kāi)始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,是由一個(gè)等邊△ABE和一個(gè)矩形BCDE拼成的一個(gè)圖形,其點(diǎn)B,C,D的坐標(biāo)分別為(1,2),(1,1),(3,1).
(1)直接寫(xiě)出E點(diǎn)和A點(diǎn)的坐標(biāo);
(2)試以點(diǎn)B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為3∶1;
(3)直接寫(xiě)出圖形A1B1C1D1E1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD=∠ABC,補(bǔ)充一個(gè)條件,使得△ABD≌△ABC,則下列選項(xiàng)不符合題意的是( 。
A. ∠D=∠CB. ∠DAB=∠CABC. BD=BCD. AD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(-1,5)、B(-1,0)、C(-4,3).
(1)直接寫(xiě)出△ABC 的面積為 ;
(2)在圖形中作出△ABC 關(guān)于y 軸的對(duì)稱圖形△A1B1C1,并直接寫(xiě)出△A1B1C1的三個(gè)頂點(diǎn)的坐標(biāo):A1( ),B1( ),C1( );
(3)是否存在一點(diǎn) P 到 AC、AB 的距離相等,同時(shí)到點(diǎn) A、點(diǎn) B 的距離也相等.若存在保留作圖痕跡標(biāo)出點(diǎn) P 的位置,并簡(jiǎn)要說(shuō)明理由;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知□ABCD中,A(1,3), B(2,-1), C(5,-5)
(1)D的坐標(biāo)為____________.
(2)若經(jīng)過(guò)原點(diǎn)的一條直線平分□ABCD的面積,求此直線的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,Rt△ABC中,∠C=90.
(1)當(dāng)∠B=60時(shí),=_______;當(dāng)∠A=45時(shí),=_______.
(2)當(dāng)∠B=2∠A時(shí),求的值;
(3)若AB=2BC,求∠A的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com