17.化簡(jiǎn)求值:$\frac{a-b}{a}÷(a-\frac{{2ab-{b^2}}}{a})$,其中a=2,b=$\sqrt{3}$.

分析 直接將括號(hào)里面通分,進(jìn)而利用多項(xiàng)式除法運(yùn)算法則求出答案.

解答 解:原式=$\frac{a-b}{a}$÷$\frac{{a}^{2}-2ab+^{2}}{a}$
=$\frac{a-b}{a}$×$\frac{a}{(a-b)^{2}}$
=$\frac{1}{a-b}$,
當(dāng)a=2,b=$\sqrt{3}$時(shí),
原式=$\frac{1}{2-\sqrt{3}}$=$\frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}$=2+$\sqrt{3}$.

點(diǎn)評(píng) 此題主要考查了分式的化簡(jiǎn)求值,正確進(jìn)行通分運(yùn)算是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(-3,4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=$\frac{k}{x}$(x<0)的圖象經(jīng)過(guò)頂點(diǎn)B.
(1)求k的值;
(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),當(dāng)△BCP的面積等于菱形OABC的面積時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)先化簡(jiǎn),再求值:(x+1)2-x(x-1),其中x=$\frac{1}{3}$.
(2)解不等式組$\left\{\begin{array}{l}{x+2≥-1}\\{3x-1<5}\end{array}\right.$并將解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,正比例函數(shù)y=$\frac{1}{2}$x的圖象與反比例函數(shù)y=$\frac{k}{x}$(k≠0)在第一象限的圖象交于A點(diǎn),過(guò)A點(diǎn)作x軸的垂線AM,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)A的坐標(biāo);
(3)如果B為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn)B與點(diǎn)A不重合),且B點(diǎn)的橫坐標(biāo)為1,在x軸上確定一點(diǎn)P,使PA+PB最。簏c(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.解不等式組:$\left\{\begin{array}{l}4x>2x-6\\ x-1≤\frac{x+1}{3}\end{array}\right.$,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:如圖,E是正方形ABCD的對(duì)角線BD上的點(diǎn),連接AE、CE.
(1)求證:AE=CE;
(2)若將△ABE沿AB翻折后得到△ABF,當(dāng)點(diǎn)E在BD的何處時(shí),四邊形AFBE是正方形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系中,點(diǎn)D的坐標(biāo)是(-3,1),點(diǎn)A的坐標(biāo)是(4,3).
(1)點(diǎn)B和點(diǎn)C的坐標(biāo)分別是(3,1)、(1,2).
(2)將△ABC平移后使點(diǎn)C與點(diǎn)D重合,點(diǎn)A、B與點(diǎn)E、F重合,畫出△DEF.
并直接寫出E、F的坐標(biāo).
(3)若AB上的點(diǎn)M坐標(biāo)為(x,y),則平移后的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(x-4,y-1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.不等式組$\left\{\begin{array}{l}{x+1≥0}\\{2(x-\frac{3}{2})<-1}\end{array}\right.$ 的解集在數(shù)軸上表示為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知實(shí)數(shù)x,y滿足x2+y2-4x-2y+5=0,求$\frac{\sqrt{x}-y}{\sqrt{3y-2\sqrt{x}}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案