分析 (1)①由條件可證明Rt△ADC≌Rt△BEC,可證得BE=AD,再利用直角三角形的性質(zhì)可證明BE=2CF;②由直角三角形的性質(zhì)可得CF=DF,可證明∠FCD=∠ADC,可證得∠EBC+∠FCD=90°,可證明結(jié)論;
(2)延長(zhǎng)CF到M,使FM=FC,連接AM,DM,可證明四邊形ACDM為平行四邊形,進(jìn)一步可證明△MAC≌△ECB,則可得MC=BE,可證得BE=2CF,再結(jié)合∠ACB=90°,可證明BE⊥CF.
解答 (1)證明:
①∵△ABC和△DEC都是等腰直角三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=90°,
在△BCE和△ACD中
$\left\{\begin{array}{l}{BC=AC}\\{∠BCE=∠ACD}\\{CE=CD}\end{array}\right.$
∴△BCE≌△ACD(SAS),
∴BE=AD,∠EBC=∠DAC,
∵F為線段AD的中點(diǎn),
∴CF=AF=DF=$\frac{1}{2}$AD
∴BE=2CF;
②∵AF=CF,
∴∠DAC=∠FCA,
∵∠BCF+∠ACF=90°,
∴∠BCF+∠EBC=90°,
即BE⊥CF;
(2)旋轉(zhuǎn)一個(gè)銳角后,(1)中的關(guān)系依然成立.
證明:如圖2,延長(zhǎng)CF到M,使FM=FC,連接AM,DM,
又AF=DF,
∴四邊形AMDC為平行四邊形
∴AM=CD=CE,∠MAC=180°-∠ACD,
∠BCE=∠BCA+∠DCE-∠ACD=180°-∠ACD,
即∠MAC=∠BCE,
在△MAC和△ECB中
$\left\{\begin{array}{l}{AC=BC}\\{∠MAC=∠BCE}\\{AM=CE}\end{array}\right.$
∴△MAC≌△ECB(SAS),
∴CM=BE;∠ACM=∠CBE,
∴BE=CM=2CF;
∴∠CBE+∠BCM=∠ACM+∠BCM=90°,
即BE⊥CF.
點(diǎn)評(píng) 本題主要考查三角形的綜合應(yīng)用,涉及知識(shí)點(diǎn)有等腰三角形、直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等.在(1)中注意直角三角形斜邊上的中線等于斜邊的一半,在(2)中構(gòu)造三角形全等是解題的關(guān)鍵.本題知識(shí)點(diǎn)較多,但是思路清晰,難度不大,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 22013 | B. | 22014 | C. | 22015 | D. | 22016 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x2+x3=3x5 | B. | (x2)3=x5 | C. | (m+n)2=m2+n2 | D. | -m2n+2nm2=m2n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{\frac{1}{2}}$ | B. | $\sqrt{0.2}$ | C. | $\sqrt{7}$ | D. | $\sqrt{(-3)^{2}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com