【題目】如圖,三個邊長均為4的正方形重疊在一起,,是其中兩個正方形的對角線交點(diǎn),則陰影部分面積是(

A.2B.4C.6D.8

【答案】D

【解析】

根據(jù)題意作圖,連接O1B,O1C,可得△O1BF≌△O1CG,那么可得陰影部分的面積與正方形面積的關(guān)系,同理得出另兩個正方形的陰影部分面積與正方形面積的關(guān)系,從而得出答案.

連接O1B,O1C,如圖:

∵∠BO1F+∠FO1C90°,∠FO1C+∠CO1G90°,

∴∠BO1F=∠CO1G

∵四邊形ABCD是正方形,

∴∠O1BF=∠O1CG45°,

在△O1BF和△O1CG

∴△O1BF≌△O1CGASA),

O1O2兩個正方形陰影部分的面積是S正方形,

同理另外兩個正方形陰影部分的面積也是S正方形,

S陰影S正方形8

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、、分別平分、,下列結(jié)論:

;

其中正確的是__________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.

(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?

(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤最大,公司應(yīng)將最低銷售單價調(diào)整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)OEFBCABE,交ACF,過點(diǎn)OODACD,下列四個結(jié)論:

EFBE+CF;

BOC90°+A;

點(diǎn)O到△ABC各邊的距離相等;

設(shè)ODm,AE+AFn,則SAEFmn

其中正確的結(jié)論是( 。

A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時,求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADFAF⊥AC

1)證明ABDF是平行四邊形;

2)若AF=DF=5,AD=6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將線段AB繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°后,得到線段AB,則點(diǎn)B的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在某一次實(shí)驗(yàn)中,測得兩個變量之間的關(guān)系如下表所示:

自變量x

1

2

3

4

12

因變量y

12.03

5.98

3.04

1.99

1.00

請你根據(jù)表格回答下列問題:

① 這兩個變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請你簡要說明理由。

②請你寫出這個函數(shù)的解析式。

③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請你用其中兩個作為條件,另一個作為結(jié)論,構(gòu)造一個真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

同步練習(xí)冊答案