【題目】如圖,矩形ABCD中,AD=5,AB=8,點E為DC上一個動點,把△ADE沿AE折疊,若點D的對應點D′,連接D′B,以下結論中:①D′B的最小值為3;②當DE=時,△ABD′是等腰三角形;③當DE=2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正確的有_____.(填上你認為正確結論的序號)
【答案】①②④
【解析】
當D′落在線段AB上時,D′B的值最小,此時D′B=AB﹣AD=3,得出①正確;
過D′作MN⊥AB交AB于點N,交CD于點M,設AN=x,則EM=x﹣2.5,證出∠ED′M=∠D′AN,因此△EMD′∽△D′NA,得出對應邊成比例,求出x=4,得出AN=BN,因此AD′=D′B,得出②正確;
當DE=2時,假設△ABD′是直角三角形,則E、D′、B在一條直線上,作EF⊥AB于點F,由勾股定理求出D′B、EB,得出③不正確;
當AD′=D′B時,由勾股定理的逆定理得出△ABD′不是直角三角形,當△ABD′是直角三角形時,由勾股定理求出D′B,得出AD′≠D′B,因此△ABD′不可能是等腰直角三角形,得出④正確.
當D′落在線段AB上時,D′B的值最小,如圖1所示:
此時D′B=AB﹣AD=8﹣5=3,
∴①正確;
過D′作MN⊥AB交AB于點N,交CD于點M,如圖2所示:
設AN=x,則EM=x﹣2.5,
∵∠AD′N=∠DAD′,∠ED′M=180°﹣∠AD′E﹣∠AD′N=180°﹣90°﹣∠AD′N=90°﹣∠AD′N,
∴∠ED′M=90°﹣∠DAD′,
∵∠D′AN=90°﹣∠DAD′,
∴∠ED′M=∠D′AN,
∵MN⊥AB,
∴∠EMD′=∠AND′,
∴△EMD′∽△D′NA,
∴,
即,
解得:x=4,
∴AN=BN,
∴AD′=D′B,
即△ABD′是等腰三角形,
∴②正確;
當DE=2時,假設△ABD′是直角三角形,
則E、D′、B在一條直線上,
作EF⊥AB于點F,如圖3所示:
D′B==,EB=,
∵≠
∴③不正確;
當AD′=D′B時,52+52≠82,
∴△ABD′不是直角三角形,
當△ABD′是直角三角形時,D′B==,
∴AD′≠D′B,
∴△ABD′不可能是等腰直角三角形,
∴④正確;
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為 度;
(3)將條形統(tǒng)計圖補充完整;
(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)嘗試探究
如圖①,在中,,,點、分別是邊、上的點,且.
①的值為多少;②直線與直線的位置關系;
(2)類比延伸
如圖②,若將圖①中的繞點順時針旋轉,連接,,則在旋轉的過程中,請判斷的值及直線 與直線的位置關系,并說明理由;
(3)拓展運用
若,,在旋轉過程中,當,,三點在同一直線上時,請直接寫出此時線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘗試探究
如圖-,在△ABC中,∠C=90°,∠A=30°,點E、F分別是BC、AC邊上的點,且EF//BC.
的值為 ;直線與直線的位置關系為 ;
類比延伸
如圖,若將圖中的繞點順時針旋轉,連接,則在旋轉的過程中,請判斷的值及直線與直線的位置關系,并說明理由;
拓展運用
若,在旋轉過程中,當三點在同一直線上時,請直接寫出此時線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點A(3,0),B(2,﹣3),并且以x=1為對稱軸.
(1)求此函數(shù)的解析式;
(2)作出二次函數(shù)的大致圖象;
(3)在對稱軸x=1上是否存在一點P,使△PAB中PA=PB?若存在,求出P點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 3,AC = 4,點D為邊AB上一點.將△BCD沿直線CD翻折,點B落在點E處,聯(lián)結AE.如果AE // CD,那么BE =________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設兩弧與邊BC圍成的陰影部分面積為S,當≤r<2時,S的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com