【題目】x34+(-2x62=__________

【答案】5x12

【解析】

先根據(jù)冪的乘方的運(yùn)算法則及積的乘方的運(yùn)算法則計(jì)算各項(xiàng)后,再合并同類(lèi)項(xiàng)即可.

(x34+(-2x62=x12+4x12=5x12.

故答案為:5x12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】100個(gè)數(shù)之和為2001,把第一個(gè)數(shù)減1,第二個(gè)數(shù)加2,第三個(gè)數(shù)減3,,第一百個(gè)數(shù)加100,則所得新數(shù)之和為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組線段中,不能構(gòu)成三角形的是(

A.57、13B.710、13C.724、25D.34、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤(pán)做游戲(每個(gè)轉(zhuǎn)盤(pán)被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)運(yùn)甲、乙轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( 。

A. a2a3=a6 B. (a23=a5

C. 2a2+3a2=5a6 D. (-2a)3=-8a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線l1:y=﹣ x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線l2:y=kx+2k與x軸交于點(diǎn)C,與直線l1交于點(diǎn)P.
(1)當(dāng)k=1時(shí),求點(diǎn)P的坐標(biāo);
(2)如圖1,點(diǎn)D為PA的中點(diǎn),過(guò)點(diǎn)D作DE⊥x軸于E,交直線l2于點(diǎn)F,若DF=2DE,求k的值;

(3)如圖2,點(diǎn)P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ的延長(zhǎng)線交直線l1于點(diǎn)R,若PR=PC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

根據(jù)所給信息,解答下列問(wèn)題:

(1)m= ,n= ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;

(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若等式0□1=﹣1成立,則□內(nèi)的運(yùn)算符號(hào)為( 。
A.+
B.﹣
C.×
D.÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(-2,0),點(diǎn)C(8,0),與y軸交于點(diǎn)A.

(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

(2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過(guò)點(diǎn)N作NMAC,交AB于點(diǎn)M,當(dāng)AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);

(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案