【題目】在中,,,點在射線上(不與點、點重合),將線段繞逆時針旋轉(zhuǎn)得到線段,作射線與射線,兩射線交于點.
(1)若點在線段上,如圖1,請直接寫出與的關(guān)系.
(2)若點在線段的延長線上,如圖2,(1)中的結(jié)論還成立嗎?請說明理由.
(3)在(2)的條件下,連接,為的中點,連接,若,,求的長.
【答案】(1),;(2)結(jié)論仍然成立;理由見解析;(3).
【解析】
(1)首先通過等腰直角三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)證明,則有,,進而可得出,則可證明,再利用等腰直角三角形的性質(zhì)得出,則可證明;
(2)首先通過等腰直角三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)證明,則有,,進而可得出,則可證明,再利用等腰直角三角形的性質(zhì)得出,則可證明;
(3)過點作于點,過點作于,首先通過等腰直角三角形解出BC,CF,AN,CN的長度,然后利用求出EN的長度,進而可求出EC,EF的長度,再利用求出HG,EF的長度,進而可求FH的長度,最后利用勾股定理即可求解.
解:(1),,
理由如下:∵,,
∴.
∵將線段繞逆時針旋轉(zhuǎn)得到線段,
∴,,
∴,且,,
∴
∴,,
∴,
∴.
又∵,
∴,
∴,
∴;
(2)結(jié)論仍然成立,
理由如下:∵,,
∴.
∵將線段繞逆時針旋轉(zhuǎn)得到線段,
∴,,
∴,且,,
∴
∴,,
∴,
∴.
又∵,
∴,
∴,
∴;
(3)如圖,過點作于點,過點作于,
∵,
∴.
∵,,
∴.
∵,
∴,
∴,
∴.
∵,,
∴,
∴,且,
∴,,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,點是拋物線的頂點.
(1)求拋物線的解析式;
(2)點是軸正半軸上的一點,,點在對稱軸左側(cè)的拋物線上運動,直線交拋物線的對稱軸于點,連接,當(dāng)平分時,求點的坐標(biāo);
(3)直線交對稱軸于點,是坐標(biāo)平面內(nèi)一點,當(dāng)與全等時,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水產(chǎn)公司有一種海產(chǎn)品共2104千克,為尋求合適的銷售價格,進行了8天試銷,試銷情況如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | 第8天 | |
售價(元/千克) | 400 | 300 | 250 | 240 | 200 | 150 | 125 | 120 |
銷售量(千克) | 30 | 40 | 48 | 50 | 60 | 80 | 96 | 100 |
觀察表中數(shù)據(jù),發(fā)現(xiàn)可以用反比例函數(shù)刻畫這種海產(chǎn)品每天的銷售量(千克)與銷售價格(元/千克)之間的關(guān)系.現(xiàn)假定在這批海產(chǎn)品的銷售中,每天的銷售量(千克)與銷售價格(元/千克)之間都滿足這一關(guān)系.
(1)寫出這個反比例函數(shù)的解析式;
(2)在試銷8天后,公司決定將這種海產(chǎn)品的銷售價格定為150元/千克,并且每天都按這個價格銷售,那么余下的這些海產(chǎn)品預(yù)計再用多少天可以全部售出?
(3)在按(2)中定價繼續(xù)銷售15天后,公司發(fā)現(xiàn)剩余的這些海產(chǎn)品必須在不超過2天內(nèi)全部售出,此時需要重新確定一個銷售價格,使后面兩天都按新的價格銷售,那么新確定的價格最高不超過每千克多少元才能完成銷售任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線與拋物線相交于、兩點,且的坐標(biāo)是
(1)求,的值;
(2)拋物線的表達式及其對稱軸和頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點。如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。
探究:
(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為___,周長___.
(2)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明;
(3)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=6,BC=8,點D、E分別在BC,AC上,且∠ADE=∠B,若△ADE是等腰三角形,則BD的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E,D,連接EC,CD.
(1)求證:直線AB是⊙O的切線;
(2)試猜想BC,BD,BE三者之間的等量關(guān)系,并加以證明;
(3)若tan∠CED=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中所有結(jié)論正確的是______(填寫番號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com