【題目】如圖,在梯形中,,,,.點是線段上的動點,點、分別是線段、上的點,且,聯(lián)結(jié)、.
(1)求證:;
(2)當(dāng)時,如果是以為腰的等腰三角形,求線段的長;
(3)當(dāng)時,求的正切值.(用含的式子表示)
【答案】(1)詳見解析;(2);(3)
【解析】
(1)先利用兩邊對應(yīng)成比例,夾角相等,判斷出,得出∠DQE=∠BDC,即可得出結(jié)論;
(2)先用△DEQ∽△BCD,得出比例式表示出EQ,再分兩種情況,建立方程求解,即可得出結(jié)論;
(3)先判得出△PHQ∽△BGD,得出,進(jìn)而表示出,,即可得出結(jié)論.
解:(1)∵,∴.
∵,,∴.
∴.
∴,∴.
(2)設(shè)的長為,則,.
∵,∴,∴.
(ⅰ)當(dāng)時,
∴,
∵,∴,∴,
∴,∴,∴,
解得,或(舍去).
(ⅱ)當(dāng)時,
∴,解得,
∵,∴此種情況不存在.
∴.
(3)過點作,交的延長線于點;過點作,垂足為點.
∵,,∴,,
∵,∴.
∵,∴.
又∵,
∴.
∴,∴.
∴,.
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D,交BC于點E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點A在x軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.
(1)當(dāng)∠OAD=30°時,求點C的坐標(biāo);
(2)設(shè)AD的中點為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時,求OA的長;
(3)當(dāng)點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的6條對角線圍成一個正六邊形A2B2C2D2E2F2;正六邊形A2B2C2D2E2F2的6條對角線又圍成一個正六邊形A3B3C3D3E3F3…;如此繼續(xù)下去,則六邊形A4B4C4D4E4F4的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,,點為上的一點,以點為圓心,為半徑的圓弧與相切于點,交于點,連接.
(1)求證:平分;
(2)若,求圓弧的半徑;
(3)在的情況下,若,求陰影部分的面積(結(jié)果保留和根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫出點B的坐標(biāo)
(2)已知D.E分別為線段OC.OB上的點,OD=5,OE=2BE,直線DE交x軸于點F,求直線DE的解析式
(3)在(2)的條件下,點M是直線DE上的一點,在x軸上方是否存在另一個點N,使以O.D.M.N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC~△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,點D在線段BC上運動,
(1)如圖1,求證:△ABD∽△ACE
(2)如圖2,當(dāng)AD⊥BC時,判斷四邊形ADCE的形狀,并證明.
(3)當(dāng)點D從點B運動到點C時,設(shè)P為線段DE的中點,在點D的運動過程中,求CP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,且與反比例函數(shù)在第一象限的圖象交于點,軸于點,.
(1)求點的坐標(biāo);
(2)動點在軸上,軸交反比例函數(shù)的圖象于點.若,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com