【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )

A. 70° B. 35° C. 40° D. 90°

【答案】C

【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)得AE=AC,∠BAD=∠EAC,再根據(jù)等腰三角形的性質(zhì)得∠AEC=∠ACE,然后根據(jù)平行線的性質(zhì)由CE∥AB得∠ACE=∠CAB=70°,則∠AEC=∠ACE=70°,再根據(jù)三角形內(nèi)角和計(jì)算出∠CAE=40°即可.

解:∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AED的位置,

∴AE=AC,∠BAD=∠CAE,

∴∠ACE=∠AEC,

∵CE∥AB,

∴∠ACE=∠CAB=70°,

∴∠AEC=∠ACE=70°,

∴∠CAE=180°﹣2×70°=40°;

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACCB,點(diǎn)E,F分別是AC,BC上的點(diǎn),CEF的外接圓交AB于點(diǎn)Q,D

1)如圖1,若點(diǎn)DAB的中點(diǎn),求證:∠DEF=∠B;

2)在(1)問(wèn)的條件下:

①如圖2,連結(jié)CD,交EFHAC4,若EHD為等腰三角形,求CF的長(zhǎng)度.

②如圖2AEDECF的面積之比是34,且ED3,求CEDECF的面積之比(直接寫(xiě)出答案).

3)如圖3,連接CQCD,若AE+BFEF,求證:∠QCD45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是2.

(1)求反比例函數(shù)的解析式.

(2)將直線沿x軸向右平移6個(gè)單位后,與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C.動(dòng)點(diǎn)Py軸正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PC之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=-x2+bx+cx軸交于A(10),B(-30)兩點(diǎn),與y軸交于點(diǎn)C.

1)求該拋物線的解析式;

2)設(shè)該拋物線的頂點(diǎn)為D,求出BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,P,BC是⊙O上的四個(gè)點(diǎn),∠APC=CPB=60°.

1)判斷ABC的形狀,并證明你的結(jié)論;

2)若BC的長(zhǎng)為6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于兩點(diǎn)(的左側(cè)),且點(diǎn)坐標(biāo)為.平行于軸的直線過(guò)點(diǎn).

1)求一次函數(shù)與二次函數(shù)的解析式;

2)判斷以線段AB為直徑的圓與直線的位置關(guān)系,并給出證明;

3)把二次函數(shù)的圖象向右平移 2 個(gè)單位,再向下平移 t 個(gè)單位(t0),二次函數(shù)的圖象與x 軸交于 M,N 兩點(diǎn),一次函數(shù)圖象交y 軸于 F 點(diǎn).當(dāng) t 為何值時(shí),過(guò) FM,N 三點(diǎn)的圓的面積最小?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以O為位似中心,將五邊形ABCDE放大得到五邊形A′B′C′D′E′,已知OA10 cm,OA′30 cm,若S五邊形A′B′C′D′E′27 cm2,則S五邊形ABCDE__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,點(diǎn)D在邊AC上,BD的垂直平分線交CA的延長(zhǎng)線于點(diǎn)E,交BD于點(diǎn)F,聯(lián)結(jié)BE,ED2EAEC

1)求證:∠EBA=∠C;

2)如果BDCD,求證:AB2ADAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:

1)當(dāng)轎車(chē)剛到乙地時(shí),此時(shí)貨車(chē)距離乙地   千米;

2)當(dāng)轎車(chē)與貨車(chē)相遇時(shí),求此時(shí)x的值;

3)在兩車(chē)行駛過(guò)程中,當(dāng)轎車(chē)與貨車(chē)相距20千米時(shí),求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案