【題目】已知函數(shù)y=kx2+(2k+1)x+1(k為實(shí)數(shù)).
(1)對(duì)于任意實(shí)數(shù)k,函數(shù)圖象一定經(jīng)過(guò)點(diǎn)(﹣2,﹣1)和點(diǎn)_____;
(2)對(duì)于任意正實(shí)數(shù)k,當(dāng)x>m時(shí),y隨著x的增大而增大,寫(xiě)出一個(gè)滿足題意的m的值.
【答案】(1) (0,1);(2) 0.
【解析】
(1)分別將x取﹣2或0時(shí),計(jì)算相應(yīng)的函數(shù)值,即可得到答案;
(2)先由k>0,判斷函數(shù)圖象的開(kāi)口方向,再求出函數(shù)的對(duì)稱軸,則m>﹣1時(shí)均符合題意,任取范圍內(nèi)一個(gè)m值即可.
解:(1)∵y=kx2+(2k+1)x+1(k為實(shí)數(shù)).
∴當(dāng)x=﹣2時(shí),y=4k+(2k+1)×(﹣2)+1=1,
當(dāng)x=0時(shí),y=0+0+1=1,
∴對(duì)于任意實(shí)數(shù)k,函數(shù)圖象一定經(jīng)過(guò)點(diǎn)(﹣2,﹣1)和點(diǎn) (0,1),
故答案為:(0,1);
(2)∵k為任意正整數(shù),
∴k>0,
∴函數(shù)圖象開(kāi)口向上,
∵函數(shù)y=kx2+(2k+1)x+1的對(duì)稱軸為,
∴在對(duì)稱軸右側(cè),y隨x的增大而增大,
∵x>m時(shí),y隨x的增大而增大,
∴,
故m=0時(shí)符合題意.(答案不唯一,m≥﹣1即可).
故答案為:0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:
商品 | 甲 | 乙 |
進(jìn)價(jià)(元/件) | x60 | x |
售價(jià)(元/件) | 200 | 100 |
若用1800元購(gòu)進(jìn)甲種商品的件數(shù)與用900元購(gòu)進(jìn)乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?
(2)若超市銷售甲、乙兩種商品共100件,其中銷售甲種商品為a件(a40),設(shè)銷售完100件甲、乙兩種商品的總利潤(rùn)為w元,求w與a之間的函數(shù)關(guān)系式,并求出w的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=(x>0)的圖象G與直線l:y=2x﹣4交于點(diǎn)A(3,a).
(1)求k的值;
(2)已知點(diǎn)P(0,n)(n>0),過(guò)點(diǎn)P作平行于x軸的直線,與圖象G交于點(diǎn)B,與直線l交于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象G在點(diǎn)A,B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)n=5時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W內(nèi)的整點(diǎn)恰好為3個(gè),結(jié)合函數(shù)圖象,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)M為BC中點(diǎn).點(diǎn)P為AB邊上一動(dòng)點(diǎn),點(diǎn)D為BC邊上一動(dòng)點(diǎn),連接DP,以點(diǎn)P為旋轉(zhuǎn)中心,將線段PD逆時(shí)針旋轉(zhuǎn)90°,得到線段PE,連接EC.
(1)當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),如圖2.
①根據(jù)題意在圖2中完成作圖;
②判斷EC與BC的位置關(guān)系并證明.
(2)連接EM,寫(xiě)出一個(gè)BP的值,使得對(duì)于任意的點(diǎn)D總有EM=EC,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠A=90°,∠B=22.5°,點(diǎn)P為線段BC上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),它到點(diǎn)A,B的距離都等于a,到點(diǎn)P的距離等于a的所有點(diǎn)組成的圖形為W,點(diǎn)D為線段BC延長(zhǎng)線上一點(diǎn),且點(diǎn)D到點(diǎn)A的距離也等于a.
(1)求直線DA與圖形W的公共點(diǎn)的個(gè)數(shù);
(2)過(guò)點(diǎn)A作AE⊥BD交圖形W于點(diǎn)E,EP的延長(zhǎng)線交AB于點(diǎn)F,當(dāng)a=2時(shí),求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, .在同一平面內(nèi),內(nèi)部一點(diǎn)到的距離都等于(為常數(shù)),到點(diǎn)的距離等于的所有點(diǎn)組成圖形.
(1)直接寫(xiě)出的值;
(2)連接并延長(zhǎng),交于點(diǎn),過(guò)點(diǎn)作于點(diǎn).
①求證:;
②求直線與圖形的公共點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對(duì)稱軸是直線x=0
D. 拋物線在對(duì)稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn),.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N,
①點(diǎn)在線段上運(yùn)動(dòng),若以,,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
②點(diǎn)在軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),,中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱,,三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫(xiě)出使得,,三點(diǎn)成為“共諧點(diǎn)”的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“互聯(lián)網(wǎng)+”時(shí)代,網(wǎng)上購(gòu)物備受消費(fèi)者青睞.某網(wǎng)店專售一種商品,其成本為每件元,已知銷售過(guò)程中,銷售單價(jià)不低于成本單價(jià),且物價(jià)部門(mén)規(guī)定這種商品的獲利不得高于.據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),月銷售量(件)與銷售單價(jià)(元)之間的函數(shù)關(guān)系如表:
銷售單價(jià)(元) | 65 | 70 | 75 | 80 | ··· |
月銷售量(件) | 475 | 450 | 425 | 400 | ··· |
請(qǐng)根據(jù)表格中所給數(shù)據(jù),求出關(guān)于的函數(shù)關(guān)系式;
設(shè)該網(wǎng)店每月獲得的利潤(rùn)為元,當(dāng)銷售單價(jià)為多少元時(shí),每月獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤(rùn)中捐出元資助貧困學(xué)生.為了保證捐款后每月利潤(rùn)不低于元,且讓消費(fèi)者得到最大的實(shí)惠,該如何確定該商品的銷售單價(jià)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com