【題目】菜農(nóng)李偉種植的某蔬菜計劃以每千克元的單價對外批發(fā)銷售,由于部分菜農(nóng)盲目擴大種植,造成該蔬菜滯銷.李偉為了加快銷售,減少損失,對價格經(jīng)過兩次下調(diào)后,以每千克元的單價對外批發(fā)銷售.
求平均每次下調(diào)的百分率;
小華準備到李偉處購買噸該蔬菜,因數(shù)量多,李偉決定再給予兩種優(yōu)惠方案以供選擇:
方案一:打九折銷售;
方案二:不打折,每噸優(yōu)惠現(xiàn)金元.
試問小華選擇哪種方案更優(yōu)惠,請說明理由.
【答案】平均每次下調(diào)的百分率是; 小華選擇方案一購買更優(yōu)惠.理由見解析.
【解析】
(1)設(shè)出平均每次下調(diào)的百分率,根據(jù)從5元下調(diào)到3.2列出一元二次方程求解即可;
(2)根據(jù)優(yōu)惠方案分別求得兩種方案的費用后比較即可得到結(jié)果.
設(shè)平均每次下調(diào)的百分率為.
由題意,得.
解這個方程,得,(不符合題意),
符合題目要求的是.
答:平均每次下調(diào)的百分率是.
小華選擇方案一購買更優(yōu)惠.
理由:方案一所需費用為:(元),
方案二所需費用為:(元).
∵,
∴小華選擇方案一購買更優(yōu)惠.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,.
如圖1,若,,,且,求AD的長;
如圖2,請利用沒有刻度的直尺和圓規(guī),在線段AB上找一點F,使得點F到邊AC的距離等于注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標注
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ ABC 和△ADE都是等邊三角形,點 B 在 ED 的延長線上.
(1)求證:△ABD≌△ACE.
(2)求證:AE+CE=BE.
(3)求∠BEC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的方程C1:(m>0)與x軸交于點B、C,與y軸交于點E,且點B在點C的左側(cè).
(1)若拋物線C1過點M(2, 2),求實數(shù)m的值;
(2)在(1)的條件下,在拋物線的對稱軸上找一點H,使得BH+EH最小,求出點H的坐標;
(3)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點B、C、F為頂點的三角形與△BCE相似?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題共10分)水果批發(fā)市場有一種高檔水果,如果每千克盈利(毛利潤)10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20千克.
(1)若以每千克能盈利18元的單價出售,問每天的總毛利潤為多少元?
(2)現(xiàn)市場要保證每天總毛利潤6000元,同時又要使顧客得到實惠,則每千克應(yīng)漲價多少元?
(3)現(xiàn)需按毛利潤的10%交納各種稅費,人工費每日按銷售量每千克支出0.9元,水電房租費每日102元,若剩下的每天總純利潤要達到5100元,則每千克漲價應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017遼寧省盤錦市,第18題,3分)如圖,點A1(1,1)在直線y=x上,過點A1分別作y軸、x軸的平行線交直線于點B1,B2,過點B2作y軸的平行線交直線y=x于點A2,過點A2作x軸的平行線交直線于點B3,…,按照此規(guī)律進行下去,則點An的橫坐標為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為 60°,然后在坡頂D測得樹頂B的仰角為300,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( ) m
A. B. 30 C. D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,AC是ABCD的一條對角線,過AC中點O的直線分別交AD,BC于點E,F(xiàn).
(1)求證:△AOE≌△COF;
(2)當EF與AC滿足什么條件時,四邊形AFCE是菱形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com