【題目】小王購買了一套經(jīng)濟適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

(1)用含的代數(shù)式表示地面總面積;

(2)若=5,=,鋪1m2地磚的平均費用為80元,那么鋪地磚的總費用為多少元?

【答案】(1)地面總面積=18+6x+2y(m2);(2)4080元.

【解析】

(1)根據(jù)總面積等于四個部分矩形的面積之和列式整理即可得解;

(2)x=5,y=代入求得答案即可.

(1)地面總面積為:6x+2×(6-3)+2y+3×(2+2)=6x+6+2y+12=6x+2y+18(m2);

(2)當(dāng)x=5,y=,鋪1m2地磚的平均費用為80元,

總費用=(6×5+2×+18)×80=51×80=4080

答:鋪地磚的總費用為4080元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明要給正方形桌子買一塊正方形桌布.鋪成圖1時,四周垂下的桌布,其長方形部分的寬均為20cm;鋪成圖2時,四周垂下的桌布都是等腰直角三角形,且桌面四個角的頂點恰好在桌布邊上,則要買桌布的邊長是_____cm.(提供數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩點A,B對應(yīng)的數(shù)分別為﹣1、3,點P為數(shù)軸上一動點.

(1)若點P到點A、點B的距離相等,寫出點P對應(yīng)的數(shù)   ;

(2)若點P到點A,B的距離之和為6,那么點P對應(yīng)的數(shù)   

(3)點A,B分別以2個單位長度/分、1個單位長度/分的速度向右運動,同時P點以6個單位長度/分的速度從O點向左運動.當(dāng)遇到A時,點P立刻以同樣的速度向右運動,并不停地往返于點A與點B之間,求當(dāng)點A與點B重合時,點P所經(jīng)過的總路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【概念學(xué)習(xí)】規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫除方,如, 等.類比有理數(shù)乘方,我們把記作,讀作“2的圈3次方”, 記作,讀作“的圈4次方”.一般地,把≠0)記作,讀作“a的圈c次方”.

【初步探究】

1)直接寫出計算結(jié)果: =______________, =______________

(2)關(guān)于除方,下列說法錯誤的是( )

A.任何非零數(shù)的圈3次方都等于它的倒數(shù) B.對于任何正整數(shù)c, =1

C D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)

【深入思考】

我們知道有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

==

(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.

=___________; =_____________ =____________

(2)想一想:將一個非零有理數(shù)a的圈cc≥3)次方寫成冪的形式等于___________.

3)算一算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中的△ABC經(jīng)過變換得到△DEF,正確的變換是( )

A.把△ABC向右平移6格
B.把△ABC向右平移4格,再向上平移1格
C.把△ABC繞著點A順時針旋轉(zhuǎn)90°,再向右平移6格
D.把△ABC繞著點A逆時針旋轉(zhuǎn)90°,再向右平移6格

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長AB到點C,使得∠ACD=45°.

(1)求證:CD是⊙O的切線.
(2)若AB=2 ,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D是BC上的點.求證:BD2+CD2=2AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖,過圓外一點作圓的切線.
已知:⊙O和點P
求過點P的⊙O的切線

小涵的主要作法如下:

如圖,(1)連結(jié)OP,作線段OP的中點A;
(2)以A為圓心,OA長為半徑作圓,交⊙O于點B,C;
(3)作直線PB和PC.
所以PB和PC就是所求的切線.

老師說:“小涵的做法是正確的.”
請回答:小涵的作圖依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC,CEAB,垂足分別為D,E,AD,CE交于點F.請你添加一個適當(dāng)?shù)臈l件,使△AEF≌△CEB.添加的條件是____________(寫出一個即可).

查看答案和解析>>

同步練習(xí)冊答案