在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn).
(1)求此二次函數(shù)的表達(dá)式.
(2)直接寫出當(dāng)<x<1時(shí),y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個(gè)單位后,與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.
(1);(2)<y<3;(3)m<的全體實(shí)數(shù).

試題分析:(1)根據(jù)點(diǎn)在曲線上點(diǎn)的坐標(biāo)滿足方程的關(guān)系,由二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn),列方程組求解即可.
(2)作圖觀察即可;
(3)根據(jù)題意,得到平移后的一次函數(shù)表達(dá)式,由a<2<b得,取x=2,解出即可.
試題解析:(1)由二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn),得
解這個(gè)方程組,得
∴此二次函數(shù)的表達(dá)式為.
(2)如圖,當(dāng)x=時(shí),y=3,當(dāng)x=1時(shí)y=,
又二次函數(shù)的頂點(diǎn)坐標(biāo)是().
∴當(dāng)<x<1時(shí)y的取值范圍是<y<3.

(3)將一次函數(shù) 的圖象向下平移m個(gè)單位后的一次函數(shù)表達(dá)式為.
與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)為a和b,
,整理得.
∵a<2<b,∴a≠b.∴,
∴m≠1.
∵a和b滿足a<2<b,∴如圖,當(dāng)x=2時(shí),.
把x=2代入,解得m<
∴m的取值范圍為m<的全體實(shí)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=x2﹣2x+3的頂點(diǎn)坐標(biāo)是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過(guò)點(diǎn)M作MN∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,sinC=,點(diǎn)P從O點(diǎn)出發(fā),沿邊OA、AB、BC勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動(dòng)。點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點(diǎn)P的運(yùn)動(dòng)速度為     cm/s, 點(diǎn)B、C的坐標(biāo)分別為          ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時(shí),△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+bx+c過(guò)點(diǎn)(-6,-2),與y軸交于點(diǎn)C,且對(duì)稱軸與x軸交于點(diǎn)B(-2,0),頂點(diǎn)為A.
(1)求該拋物線的解析式和A點(diǎn)坐標(biāo);
(2)若點(diǎn)D是該拋物線上的一個(gè)動(dòng)點(diǎn),且使△DBC是以B為直角頂點(diǎn)BC為腰的等腰直角三角形,求點(diǎn)D坐標(biāo);
(3)若點(diǎn)M是第二象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),經(jīng)過(guò)點(diǎn)M的直線MN與y軸交于點(diǎn)N,是否存在以O(shè)、M、N為頂點(diǎn)的三角形與△OMB全等?若存在,請(qǐng)求出直線MN的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線經(jīng)過(guò)A(-1,0),C(3,-2)兩點(diǎn),與軸交于點(diǎn)D,與軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過(guò)點(diǎn)E(1,1)作EF⊥軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)P旋轉(zhuǎn)180°得△MNQ(點(diǎn)M、N、Q分別與點(diǎn)A、E、F對(duì)應(yīng)),使點(diǎn)M、N在拋物線上,求點(diǎn)N和點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=-x2+2bx+c,當(dāng)x>1時(shí),y的值隨x值的增大而減小,則實(shí)數(shù)b的取值范圍是( 。
A.b≥-1B.b≤-1C.b≥1D.b≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點(diǎn)A、C分別在x軸、y軸上,當(dāng)點(diǎn)A在x軸上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在y軸上運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,點(diǎn)B到原點(diǎn)的最大距離是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線可以由拋物線平移得到,則下列平移過(guò)程正確的是
A.先向左平移2個(gè)單位,再向上平移3個(gè)單位
B.先向左平移2個(gè)單位,再向下平移3個(gè)位
C.先向右平移2個(gè)單位,再向下平移3個(gè)單位
D.先向右平移2個(gè)單位,再向上平移3個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案