【題目】如圖,在RtABC中,ACBC,AB10,以AB為斜邊向上作RtABD,使∠ADB90°.連接CD,若CD7,則AD_____

【答案】68

【解析】

首先證明ACB,D四點共圓,再根據(jù)AC=BC,即可得出∠ADC=ABC=45°,作AECDE,則AED是等腰直角三角形,設(shè)AE=DE=x,則AD=x,在直角三角形ACE中,根據(jù)勾股定理即可求得.

如圖,∵∠ACB=∠ADB90°

A,CB,D四點共圓,

又∵ACBC,

∴∠BAC=∠ABC45°

∴∠ADC=∠ABC45°,

AECDE,

∴△AED是等腰直角三角形,

設(shè)AEDEx,則ADx

CD7,

CE7x,

AB10

ACAB5,

RtAEC中,AC2AE2+EC2,

∴(52x2+7x2

解得x43,

ADx86

故答案為68

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,點A到直線BC的距離為d,ABACd,以A為圓心,AC為半徑畫圓弧,圓弧交直線BC于點D,過點DDEAC交直線AB于點E,若BC=4DE=1,∠EDA=ACD,則AD=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有七張正面分別標有數(shù)字:﹣3,﹣2,﹣1,0,1,2,3的卡片,除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程x22m1x+m23m0有實數(shù)根,且不等式組無解的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某農(nóng)場主利用圍墻(圍墻足夠長)為一邊,用總長為80m的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則能圍成的矩形區(qū)域ABCD的面積最大值是___m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育課上,老師為了解女學(xué)生定點投籃的情況,隨機抽取8名女生進行每人4次定點投籃的測試,進球數(shù)的統(tǒng)計如圖所示.

(1)求女生進球數(shù)的平均數(shù)、中位數(shù);

(2)投球4次,進球3個以上(含3個)為優(yōu)秀,全校有女生1200人,估計為“優(yōu)秀”等級的女生約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CE是⊙O切線,C是切點,EA交弦BC于點D、交⊙O于點F,連接CF

1)如圖1,求證:∠ECB=∠F+90°;

2)如圖2,連接CD,延長BACE于點H,當ODBCHAHE時,求證:ABCE;

3)如圖3,在(2)的條件KEF上,EHFKSADO,求WE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,都是等腰直角三角形,,且,點上,連接.

1)如果,①求;②若是關(guān)于的方程的兩個實數(shù)根,求的值;

2)如圖2,將繞點逆時針旋轉(zhuǎn),使,連接,求五邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每個小正方形都是邊長為1個單位長度的小正方形,菱形OABC在平面直角坐標系中的位置如圖所示.

1)畫出菱形OABC關(guān)于原點O的中心對稱圖形OA1B1C1,并直接寫出點B1的坐標;

2)將菱形OABO繞原點O順時針旋轉(zhuǎn)90°,得到菱形OA2B2C2,請畫出菱形OA2B2C2并求出點B旋轉(zhuǎn)到B2的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線ACBD交于點O,點E在邊CB的延長線上,且∠EAC=90°,AE2=EBEC

1)求證:四邊形ABCD是矩形;

2)延長DBAE交于點F,若AF=AC,求證:AE=BF

查看答案和解析>>

同步練習(xí)冊答案