【題目】完成下面推理過程:

如圖,已知DEBC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=    

DF、BE分別平分∠ADE、∠ABC,

∴∠ADF=    

ABE=    

∴∠ADF=ABE

      

∴∠FDE=DEB.(  

【答案】ABC,兩直線平行,同位角相等;∠ADE,∠ABC,角平分線的定義;DF,BE,同位角相等,兩直線平行;兩直線平行,內(nèi)錯角相等

【解析】

根據(jù)平行線的性質(zhì)由DEBC得∠ADE=ABC,再根據(jù)角平分線的定義得到∠ADF=ADE,∠ABE=ABC,則∠ADF=ABE,然后根據(jù)平行線的判定得到
DFBE,最后利用平行線的性質(zhì)得∠FDE=DEB

DEBC,
∴∠ADE=ABC
DF、BE分別平分∠ADE、∠ABC,
∴∠ADF=ADE,
ABE=ABC,
∴∠ADF=ABE,
DFBE,
∴∠FDE=DEB
故答案為∠ABC,兩直線平行,同位角相等;∠ADE,∠ABC,角平分線的定義;DF,BE,同位角相等,兩直線平行;兩直線平行,內(nèi)錯角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】珍重生命,注意安全!同學們在上下學途中一定要注意騎車安全,小明騎單車上學,當他騎了一段時,想起要買文具,于是又折回到剛經(jīng)過的文具店,買到文具后繼續(xù)去學校,下圖是他本次所用的時間與離家路程的關系示意圖,根據(jù)圖中提供的信息回答下列問題:

1)小明家到學校的路程是___________米;小明在文具店停留了__________分鐘.

2)本次上學途中,小明一共行駛了多少米?

3)我們認為騎單車的速度超過300/分鐘就超越了安全限度,問:在整個上學的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為點E.連接DE, 則線段DE與線段AC有怎樣的數(shù)量關系?請證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,三角形ABC的頂點坐標分別為,,把三角形ABC進行平移,平移后得到三角形,且三角形ABC內(nèi)任意點平移后的對應點為

1)面出平移后的圖形;

2)三角形ABC是經(jīng)過怎樣平移后得到三角形的?寫出三個頂點,,的坐標;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCE的邊長為1,點M、N分別在BC、CD上,且△CMN的周長為2,則△MAN的面積的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰Rt△CEF的斜邊CE在正方形ABCD的邊BC的延長線上,CF>BC,取線段AE的中點M 。

(1)求證:MD=MF,MD⊥MF
(2)若Rt△CEF繞點C順時針旋轉(zhuǎn)任意角度(如圖2),其他條件不變。(1)中的結(jié)論是否仍然成立,若成立,請證明,若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,老師提出一個問題:如圖①,在平面直角坐標系中,點的坐標為,點軸正半軸上一動點,以為邊作等腰直角三角形,使,點在第一象限,設點的橫坐標為,設……,之間的函數(shù)圖象如圖②所示.題中用“……”表示的缺失的條件應補為(

A.的橫坐標B.的縱坐標C.的周長D.的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知經(jīng)過原點的拋物線 軸的另一個交點為 ,現(xiàn)將拋物線向右平移 個單位長度,所得拋物線與 軸交于 ,與原拋物線交于點 ,設 的面積為 ,則用 表示 =

查看答案和解析>>

同步練習冊答案