【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
23
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時(shí)過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(diǎn)(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對(duì)稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)學(xué)生積極參加體育鍛煉,某學(xué)校準(zhǔn)備購買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生所穿運(yùn)動(dòng)鞋的號(hào)碼,繪制了如下的統(tǒng)計(jì)圖①和圖②(不完整).請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值為 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并求本次調(diào)查樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購買400雙運(yùn)動(dòng)鞋,建議購買35號(hào)運(yùn)動(dòng)鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)480個(gè)零件.當(dāng)生產(chǎn)任務(wù)完成一半時(shí),停止生產(chǎn)進(jìn)行反思和改進(jìn),用時(shí)20分鐘.恢復(fù)生產(chǎn)后工作效率比原來可以提高20%,要求比原計(jì)劃提前40分鐘完成任務(wù),那么反思改進(jìn)后每小時(shí)需要生產(chǎn)多少個(gè)零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)C在第一象限,且∠COA=60°,以OA、OC為鄰邊作菱形OABC,且菱形OABC的面積為.
(1)求B. C兩點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿射線CB勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從A點(diǎn)出發(fā)沿射線BA的方向勻速運(yùn)動(dòng),P、Q兩點(diǎn)的運(yùn)動(dòng)速度均為2個(gè)單位/秒,連接PQ和AC,PQ和AC所在直線交于點(diǎn)D,點(diǎn)E為線段BQ的中點(diǎn),連接DE,設(shè)動(dòng)點(diǎn)P、Q的運(yùn)動(dòng)時(shí)間為t,請(qǐng)將△DQE的面積S用含t的式子表示,并直接寫出t的取值范圍;
(3)在(2)的條件下,過點(diǎn)Q作QF⊥y軸于點(diǎn)F,當(dāng)t為何值時(shí),以P、B.、F.、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
材料:我們知道,如果一個(gè)三角形的三邊長固定,那么這個(gè)三角形就固定。若給出任意一個(gè)三角形的三邊長,你能求出它的面積嗎?設(shè)一個(gè)三角形的三邊長分別為,,,我們把它的面積記為,古希臘的幾何學(xué)家海倫(Hcron,約公元50年),在數(shù)學(xué)史上以解決幾何測量問題而聞名,在他的著作《度量》一書中,給出了一個(gè)通過三角形的三邊長來求面積的海倫公式。我們可以把海倫公式變形為:(其中)
材料2:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆寫,即.配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最最大(。┲担
例如:求的最小值.
當(dāng)時(shí),,此時(shí)取得最小值,
請(qǐng)你運(yùn)用材料提供的方法,解答以下問題:
(1)若三角形的三邊長分別為,,,求該三角形的面積;
(2)小新手里有一根長米的鐵絲,他想用這根鐵絲制作一個(gè)三角形模型,要求該三角形的一邊長為米且面積最大,請(qǐng)你幫助他計(jì)算出這個(gè)三角形另兩邊的邊長,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)和.
(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn)).將圖象M沿直線翻折,得到圖象N.若過點(diǎn)的直線與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解成都市初中學(xué)生“數(shù)學(xué)核心素養(yǎng)”的掌握情況,教育科學(xué)院命題教師赴某校初三年級(jí)進(jìn)行調(diào) 研,命題教師將隨機(jī)抽取的部分學(xué)生成績(得分為整數(shù),滿分 160 分)分為 5 組:第一組 85~100;第二組100~115;第三組 115~130;第四組 130~145;第五組 145~160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問題:
(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?成績?yōu)榈谖褰M的有多少名學(xué)生?
(2)針對(duì)考試成績情況,現(xiàn)各組分別派出1名代表(分別用 A、B、C、D、E 表示5個(gè)小組中選出來的同學(xué)),命題教師從這5名同學(xué)中隨機(jī)選出兩名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫樹狀圖的方法求出所選兩名同學(xué)剛好來自第一、五組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com