【題目】如圖,直線yk1x+b與雙曲線y交于點A(1,4),點B(3,m)

1)求k1k2的值;

2)求AOB的面積.

【答案】1k1k2的值分別為﹣4;(2

【解析】

1)先把A點坐標代入y中可求出k2得到反比例函數(shù)解析式為y,再利用反比例函數(shù)解析式確定B(3),然后利用待定系數(shù)法求一次函數(shù)解析式得到k1的值;

2)設直線ABx軸交于C點,如圖,利用x軸上點的坐標特征求出C點坐標,然后根據(jù)三角形面積公式,利用SAOBSAOCSBOC計算.

解:(1)把A(1,4)代入yk21×44

反比例函數(shù)解析式為y,

B(3,m)代入y3m4,解得m,則B(3,),

A(1,4),B(3,)代入yk1x+b,解得

一次函數(shù)解析式為y=﹣x+,

∴k1k2的值分別為﹣,4;

2)設直線ABx軸交于C點,如圖,

y0時,﹣x+0,解得x4,則C(4,0)

∴SAOBSAOCSBOC×4×4×4×

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,,,,分別是,,,上的動點,且

1)求證:四邊形是正方形;

2)求四邊形面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a∥b,直線ca、b都相交,從所標識的∠1∠2、∠3、∠4、∠5這五個角中任意選取兩個角,則所選取的兩個角互為補角的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60°方向的B處.

1)求漁船從AB的航行過程中與小島M之間的最小距離(結果用根號表示):

2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結果精確到0.1小時).(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且利潤率不得高于.經(jīng)市場調(diào)查,每天的銷售量(千克)與每千克售價(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價(元/千克)

45

50

55

銷售量(千克)

110

100

90

1)求之間的函數(shù)表達式,并寫出自變量的范圍;

2)設每天銷售該商品的總利潤為(元),求之間的函數(shù)表達式(利潤=收入-成本),并求出售價為多少元時每天銷售該商品所獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,BC3AC5,點D為線段AC上一動點,將線段BD繞點D逆時針旋轉(zhuǎn)90°,點B的對應點為E,連接AE,則AE長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形OABC構成,長方形的長OA12m,寬OC4m.按照圖中所示的平面直角坐標系,拋物線可以用y=x2+bx+c表示.在拋物線型拱璧上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m.那么兩排燈的水平距離最小是(  )

A.2mB.4mC.mD.m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象經(jīng)過點A(1,0)、點B(3,0)、點C(4,y1),若點D(x2y2)是拋物線上任意一點,有下列結論:

①二次函數(shù)yax2+bx+c的最小值為﹣4a;

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2y1,則x24

④一元二次方程cx2+bx+a0的兩個根為﹣1

其中正確結論的是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小翔在如圖1所示的場地上勻速跑步,他從點A出發(fā),沿箭頭所示方向經(jīng)過點B跑到點C,共用時30秒.他的教練選擇了一個固定的位置觀察小翔的跑步過程.設小翔跑步的時間為t(單位:秒),他與教練的距離為y(單位:米),表示yt的函數(shù)關系的圖象大致如圖2所示,則這個固定位置可能是圖1中的( )

A. M B. N C. P D. Q

查看答案和解析>>

同步練習冊答案