分析 (1)根據(jù)圖形表示出陰影部分的面積即可;
(2)根據(jù)(1)中的結(jié)果得出即可;
(3)根據(jù)大長方形面積等于長乘以寬或5個(gè)矩形面積和的兩種不同算法可列出等式;
(4)畫出長m+n和寬m+3n的矩形,再分成8個(gè)矩形即可.
解答 解:(1)圖②中陰影部分的面積為(m+n)2-4mn或(m-n)2,
故答案為:(m+n)2-4mn或(m-n)2;
(2)三個(gè)代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系是(m+n)2-4mn=(m-n)2,
故答案為:(m+n)2-4mn=(m-n)2;
(3)圖③表示的關(guān)系式為:(2m+n)(m+n)=2m2+3mn+n2,
故答案為:(2m+n)(m+n)=2m2+3mn+n2;
(4)如圖所示:.
點(diǎn)評(píng) 本題考查了完全平方公式的幾何背景,屬于基礎(chǔ)題,注意仔細(xì)觀察圖形,表示出各圖形的面積是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | 3$\sqrt{2}$-$\sqrt{2}$=3 | C. | $\sqrt{4\frac{1}{4}}$=2$\frac{1}{2}$ | D. | $\sqrt{(-3)^{2}}$=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com