【題目】如圖,用4個全等的直角三角形與1個小正方形鑲嵌而成的正方圖案,已知大正方形面積為10,小正方形面積為2,若用表示直角三角形的兩直角邊,下列四個說法:①;②;③;④.其中說法正確的有____________.(只填序號)
【答案】①③④
【解析】
根據(jù)正方形的性質(zhì)、直角三角形的性質(zhì)、直角三角形面積的計算公式及勾股定理解答.
解:①∵△ABC為直角三角形,
∴根據(jù)勾股定理:x2+y2=AB2=10,
故本選項(xiàng)正確;
②由四個直角三角形的面積和+小正方形的面積=大正方形的面積得:
2xy+2=10可得2xy=8,
∴xy=4,
故本選項(xiàng)錯誤;
③由圖可知,x-y=CE=,
故本選項(xiàng)正確;
④∵x-y=,
∴x=y+,代入xy=4中,
(y+)y=4,
解得:y=或y=(舍),
∴x=2,
∴,
故本選項(xiàng)正確;
∴正確結(jié)論有①③④.
故答案為:①③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以AB為直徑的圓中,∠ACB=∠ABD=90°,∠D=60°,∠ABC=45°.
(1)求證:EC平分∠AEB;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,垂足為,點(diǎn)是邊上的一個動點(diǎn),過點(diǎn)作交線段于點(diǎn),作交于點(diǎn),交線段于點(diǎn),設(shè).
(1)用含的代數(shù)式表示線段的長;
(2)設(shè)的面積為,求與之間的函數(shù)關(guān)系式,并寫出定義域;
(3)若為直角三角形,求出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形是學(xué)校的一塊種植基地示意圖,這塊基地可以分成正方形和,已知這個五邊形的周長為88米,正方形的面積為400平方米.
(1)求正方形的周長;
(2)求點(diǎn)到邊的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)A(﹣2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點(diǎn),當(dāng)1≤x≤4時,求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2)
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P為第一象限拋物線上一點(diǎn),是否存在使△PBC面積最大的點(diǎn)P?若不存在,請說明理由;若存在,求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)D坐標(biāo)為(1,﹣1),連接AD,將線段AD繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180度得線段MN(點(diǎn)M、N分別與點(diǎn)A、D對應(yīng)),使點(diǎn)M、N都在拋物線上,求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E,CD=6,BC=8,則DE的長度為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com