分析 1)根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行求出BC∥AD,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CBE=∠DFE,然后利用“角角邊”證明△BEC和△FCD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=EF,然后利用對角線互相平分的四邊形是平行四邊形證明即可;
(2)由勾股定理列式求出AB,由平行四邊形的面積公式列式計(jì)算即可得解.
解答 (1)證明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
∵E是邊CD的中點(diǎn),
∴CE=DE,
在△BEC與△FED中,
$\left\{\begin{array}{l}{∠CBE=∠DFE}&{\;}\\{∠BEC=∠FED}&{\;}\\{CE=DE}&{\;}\end{array}\right.$,
∴△BEC≌△FED(AAS),
∴BE=FE,
又∵E是邊CD的中點(diǎn),
∴CE=DE,
∴四邊形BDFC是平行四邊形;
(2)解:∵BF⊥CD,CE=DE,
∴BD=BC=AF-AD=20cm,
由勾股定理得,AB=$\sqrt{B{D}^{2}-A{D}^{2}}$=$\sqrt{2{0}^{2}-1{0}^{2}}$=10$\sqrt{3}$(cm),
∴四邊形BDFC的面積=20×10$\sqrt{3}$=200$\sqrt{3}$(cm2).
點(diǎn)評(píng) 本題考查了平行四邊形的判定,等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理;熟練掌握平行四邊形的判定,證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 400 | B. | 401 | C. | 402 | D. | 403 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com