【題目】一次函數(shù)CD:與一次函數(shù)AB:,都經(jīng)過點(diǎn)B(-1,4).
(1)求兩條直線的解析式;
(2)求四邊形ABDO的面積.
【答案】(1)直線CD的解析式為:;直線AB的解析式為:;
(2)四邊形ABDO的面積為7.5.
【解析】
(1)將B(﹣1,4)代入一次函數(shù)CD:與一次函數(shù)AB:,可以得到關(guān)于k、b的二元一次方程組,解方程組即可得到k、b的值,即可求出兩條直線的解析式.
(2)由圖可知四邊形ABDO不是規(guī)則的四邊形,利用割補(bǔ)法得到,分別算出△ABC與△DOC的面積即可算出答案.
解:(1)∵一次函數(shù)CD:與一次函數(shù)AB:,都經(jīng)過點(diǎn)B(﹣1,4),
∴將點(diǎn)B(﹣1,4)代入一次函數(shù)CD:與一次函數(shù)AB:,可得:
解得: ;
∴直線CD的解析式為:;直線AB的解析式為:;
(2)∵點(diǎn)A為直線AB與x軸的交點(diǎn),令y=0得:解得:,
∴A(﹣3,0);
∵C為直線CD與x軸的交點(diǎn),令y=0得:解得:,
∴C(3,0);
∵D為直線CD與y軸的交點(diǎn),令x=0得y=3
∴D(0,3);
∴AC=6,OC=3,OD=3;
由圖可知;
∴四邊形ABDO的面積為7.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個結(jié)論中成立的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明一家利用國慶八天駕車到某景點(diǎn)旅游,小汽車出發(fā)前油箱有油35L,行駛?cè)舾尚r后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關(guān)系如圖所示,根據(jù)圖像回答下列問題:
(1)小汽車行駛______h后加油,中途加油_______L
(2)求加油前油箱余油量Q與行駛時間t的函數(shù)關(guān)系式
(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點(diǎn)200km,車速80km/h,要到達(dá)目的地,油箱中的油是否夠用?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某型號新能源純電動汽車充滿電后,蓄電池剩余電量(千瓦時)關(guān)于已行駛路程 (千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出蓄電池剩余電量為35千瓦時時汽車已行駛的路程,當(dāng)時,求1千瓦時的電量汽車能行駛的路程;
(2)當(dāng)時求關(guān)于的函數(shù)表達(dá)式,并計(jì)算當(dāng)汽車已行駛180千米時,蓄電池的剩余電量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的說理過程:如圖,在四邊形中,,分別是,延長線上的點(diǎn),連接,分別交,于點(diǎn),.已知,.對和說明理由.
理由:(已知),
(______),
(等量代換).
(______).
(______).
(______),
(______).
(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市郊景區(qū)內(nèi)一條筆直的公路經(jīng)過、兩個景點(diǎn),景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn),經(jīng)測量景點(diǎn)位于景點(diǎn)的北偏東方向,位于景點(diǎn)的正北方向,且景點(diǎn)位于景點(diǎn)的北偏東方向,景點(diǎn)與景點(diǎn)距離為.
求景點(diǎn)與景點(diǎn)的距離;
為方便游客到景點(diǎn)游玩,景區(qū)管委會準(zhǔn)備由景點(diǎn)向公路修建一條距離最短的公路,不考慮其它因素,求出這條公路的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是邊AC上一點(diǎn),聯(lián)結(jié)BD,給出下列條件:∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨(dú)能夠判定△ABD∽△ACB的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),且∠APB=135°.求證:∠APB是∠MON的智慧角.
(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子表示∠APB的度數(shù).
(3)如圖3,C是函數(shù) 圖象上的一個動點(diǎn),過C的直線CD分別交x軸和y軸于A,B兩點(diǎn),且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B (1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個二次函數(shù)的解析式;
(2)連接AC、BC,判斷△ABC的形狀,并證明;
(3)若點(diǎn)P為二次函數(shù)對稱軸上點(diǎn),求出使△PBC周長最小時,點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com