【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競賽,從中抽取了部分學(xué)生成績進(jìn)行統(tǒng)計(jì)(滿分100分,學(xué)生成績?nèi)≌麛?shù)),并按照成績從低到高分成、、、、五個(gè)小組,繪制統(tǒng)計(jì)圖如下(未完成),解答下列問題:
(1)樣本容量為______,頻數(shù)分布直方圖中______;
(2)扇形統(tǒng)計(jì)圖中小組所對(duì)應(yīng)的扇形圓心角為______度,并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績?cè)?/span>80分以上(不含80分)為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績優(yōu)秀的學(xué)生有多少名?
【答案】(1)200,16;(2)126,補(bǔ)全頻數(shù)分布直方圖見解析;(3)估計(jì)成績優(yōu)秀的學(xué)生有940名.
【解析】
(1)根據(jù)B組的頻數(shù)以及百分比,即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a的值;
(2)利用360°乘以對(duì)應(yīng)的百分比,即可求解;
(3)利用全校總?cè)藬?shù)乘以對(duì)應(yīng)的百分比,即可求解.
(1)學(xué)生總數(shù):(人),則;
故答案為:200;16;
(2),如圖所示,
(3)樣本、兩組的百分?jǐn)?shù)的和為,
∴(名)
答:估計(jì)成績優(yōu)秀的學(xué)生有940名.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處
B.在AC、BC兩邊垂直平分線的交點(diǎn)處
C.在AC、BC兩邊高線的交點(diǎn)處
D.在AC、BC兩邊中線的交點(diǎn)處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國的茶文化源遠(yuǎn)流長,根據(jù)制作方法和茶多酚氧化(發(fā)酵)程度的不同,可分為六大類:綠茶(不發(fā)酵)、白茶(輕微發(fā)酵)、黃茶(輕發(fā)酵)、青茶(半發(fā)酵)、黑茶(后發(fā)酵)、紅茶(全發(fā)酵).春節(jié)將至,為款待親朋好友,小葉去茶莊選購茶葉.茶莊有碧螺春、龍井兩種綠茶,一種青茶——武夷巖茶及一種黃茶——銀針出售.
(1)隨機(jī)購買一種茶葉,是綠茶的概率為________;
(2)隨機(jī)購買兩種茶葉,求一種是綠茶、一種是銀針的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風(fēng)暴,有極強(qiáng)的破壞力,如圖,據(jù)氣象觀測、距某城市的正南方向千米處有一臺(tái)風(fēng)中心,其中心最大風(fēng)力為級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心千米風(fēng)力就會(huì)減弱一級(jí),該臺(tái)風(fēng)中心現(xiàn)正以千米/時(shí)的速度沿北偏東方向往移動(dòng),且臺(tái)風(fēng)中心風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過四級(jí),則稱為受臺(tái)風(fēng)影響
該城市是否會(huì)受到這交臺(tái)風(fēng)的影響?請(qǐng)說明理由;
若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市持續(xù)時(shí)間有多少?
該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A是雙曲線在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長與這個(gè)雙曲線的另一分支交于點(diǎn)B,以AB為底邊作等腰直角三角形ABC,使得點(diǎn)C位于第四象限。
(1)點(diǎn)C與原點(diǎn)O的最短距離是________;
(2)沒點(diǎn)C的坐標(biāo)為(,點(diǎn)A在運(yùn)動(dòng)的過程中,y隨x的變化而變化,y關(guān)于x的函數(shù)關(guān)系式為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=5cm,BC=10cm,動(dòng)點(diǎn)M從點(diǎn)D出發(fā),按折線DCBAD方向以3cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),按折線DABCD方向以2cm/s的速度運(yùn)動(dòng).點(diǎn)E在線段BC上,且BE=1cm,若M、N兩點(diǎn)同時(shí)從點(diǎn)D出發(fā),到第一次相遇時(shí)停止運(yùn)動(dòng).
(1)求經(jīng)過幾秒鐘M、N兩點(diǎn)停止運(yùn)動(dòng)?
(2)求點(diǎn)A、E、M、N構(gòu)成平行四邊形時(shí),M、N兩點(diǎn)運(yùn)動(dòng)的時(shí)間;
(3)設(shè)運(yùn)動(dòng)時(shí)間為t(s),用含字母t的代數(shù)式表示△EMN的面積S(cm2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)M和圖形W,若圖形W上存在一點(diǎn)N(點(diǎn)M,N可以重合),使得點(diǎn)M與點(diǎn)N關(guān)于一條經(jīng)過原點(diǎn)的直線l對(duì)稱,則稱點(diǎn)M與圖形W是“中心軸對(duì)稱”的
對(duì)于圖形和圖形,若圖形和圖形分別存在點(diǎn)M和點(diǎn)N(點(diǎn)M,N可以重合),使得點(diǎn)M與點(diǎn)N關(guān)于一條經(jīng)過原點(diǎn)的直線l對(duì)稱,則稱圖形和圖形是“中心軸對(duì)稱”的。
特別地,對(duì)于點(diǎn)M和點(diǎn)N,若存在一條經(jīng)過原點(diǎn)的直線l,使得點(diǎn)M與點(diǎn)N關(guān)于直線l對(duì)稱,則稱點(diǎn)M和點(diǎn)N是“中心軸對(duì)稱”的。
(1)如圖1,在正方形ABCD中,點(diǎn),點(diǎn),
①下列四個(gè)點(diǎn),,,中,與點(diǎn)A是“中心軸對(duì)稱”的是________;
②點(diǎn)E在射線OB上,若點(diǎn)E與正方形ABCD是“中心軸對(duì)稱”的,求點(diǎn)E的橫坐標(biāo)的取值范圍;
(2)四邊形GHJK的四個(gè)頂點(diǎn)的坐標(biāo)分別為,,,,一次函數(shù)圖象與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段與四邊形GHJK是“中心軸對(duì)稱”的,直接寫出b的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+10與x軸、y軸分別交于點(diǎn)B,C,點(diǎn)A的坐標(biāo)為(8,0),P(x,y)是直線y=﹣x+10在第一象限內(nèi)一個(gè)動(dòng)點(diǎn).
(1)求△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量的x的取值范圍;
(2)當(dāng)△OPA的面積為10時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,若二次函數(shù)的圖象與x軸交于點(diǎn)A(-2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)的圖象的對(duì)稱點(diǎn)為C。
(1)求b、c的值;
(2)證明:點(diǎn)C 在所求的二次函數(shù)的圖象上;
(3)如圖②,過點(diǎn)B作DB⊥x軸交正比例函數(shù)的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)的圖象于點(diǎn)E,連結(jié)AD、CD。如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)到達(dá)終點(diǎn)時(shí),另一個(gè)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE,設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC,若存在,求出t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com