如圖,平行四邊形ABCD中,對角線AC,BD交于O點,過O點作直線EF,交AD,BC于E、F,
(1)試說明OE=OF
(2)四邊形ABFE的面積與四邊形FCDE的面積間有何關系?試說明你的結論.
分析:(1)根據(jù)平行四邊形的性質和已知條件證明△AOE≌△COF即可;
(2)四邊形ABFE的面積與四邊形FCDE的面積相等,根據(jù)全等三角形的面積相等即可說明.
解答:(1)證明:
∵四邊形ABCD是平行四邊形,
∴AO=OC,AD‖BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
∠AOE=∠COF
AO=CO
∠EAO=∠FCO
,
∴△AOE≌△COF,
∴OE=OF;
(2)S四邊形ABEF=Ss四邊形FCDE
理由如下:
∵四邊形ABCD是平行四邊形,
∴AB=CD,BC=AD,∠ABC=∠CAD,△AOE≌△COF
∴△ABC≌△CDA(全等三角形的面積相等).
又∵△AOE≌△COF,
∴S三角形AOE=S三角形COF,
∴S四邊形ABEF=S四邊形CDEF
點評:本題考查了平行四邊形的性質和全等三角形的判定和性質,運用平行四邊形的性質解決以下問題,如求角的度數(shù)、線段的長度,證明角相等或互補,證明線段相等或倍分等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二精英家教網次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內,則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉一定角度后,分別交BC、AD于點E、F.
精英家教網
(1)試說明在旋轉過程中,線段AF與EC總保持相等;
(2)當旋轉角為90°時,在圖2中畫出直線AC旋轉后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).(圖供畫圖或解釋時使用)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案