(2000•甘肅)如圖,AB是半圓的直徑,直線MN切半圓于C,CM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圓的半徑是   
【答案】分析:根據(jù)切線的性質(zhì),只需連接OC.根據(jù)切線的性質(zhì)定理以及平行線等分線段定理得到梯形的中位線,再根據(jù)梯形的中位線定理進行計算即可.
解答:解:連接OC,則OC⊥MN.
∴OC∥AM∥BN,
又OA=OB,
則MC=NC.
根據(jù)梯形的中位線定理,得該半圓的半徑是
點評:此題主要是根據(jù)切線的性質(zhì)定理和平行線等分線段定理,發(fā)現(xiàn)梯形的中位線,進而熟練運用梯形的中位線定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:解答題

(2000•甘肅)如圖,已知半圓的直徑AB=12cm,點C、D是這個半圓的三等分點,求弦AC、AD有弧CD圍成的陰影部分的面積.(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圓》(04)(解析版) 題型:填空題

(2000•甘肅)如圖,有一圓弧形橋拱,拱形的半徑OA=10m,橋拱的跨度AB=16m,則拱高CD=    m.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《四邊形》(02)(解析版) 題型:填空題

(2000•甘肅)如圖,AB是半圓的直徑,直線MN切半圓于C,CM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圓的半徑是   

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:填空題

(2000•甘肅)如圖,有一圓弧形橋拱,拱形的半徑OA=10m,橋拱的跨度AB=16m,則拱高CD=    m.

查看答案和解析>>

同步練習冊答案