18.(1)計(jì)算:($\frac{1}{2}$)-1+($\sqrt{2016}$-2sin60°)0-|1-$\sqrt{3}$|
(2)解方程:$\frac{6}{x}$-$\frac{1}{x-2}$=1.

分析 (1)原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及絕對(duì)值的代數(shù)意義化簡(jiǎn),計(jì)算即可得到結(jié)果;
(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.

解答 解:(1)原式=2+1-$\sqrt{3}$+1=4-$\sqrt{3}$;
(2)去分母得:6x-12-x=x2-2x,即x2-7x+12=0,
分解因式得:(x-3)(x-4)=0,
解得:x=3或x=4,
經(jīng)檢驗(yàn)x=3與x=4都為分式方程的解.

點(diǎn)評(píng) 此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.$\frac{1}{3}$,$\sqrt{3}$,π,$\sqrt{25}$中無(wú)理數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,點(diǎn)E為邊BC的中點(diǎn).
(1)求證:四邊形AECD為平行四邊形;
(2)在CD邊上取一點(diǎn)F,聯(lián)結(jié)AF、AC、EF,設(shè)AC與EF交于點(diǎn)G,且∠EAF=∠CAD.求證:△AEC∽△ADF;
(3)在(2)的條件下,當(dāng)∠ECA=45°時(shí).求:FG:EG的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.第六次全國(guó)人口普查數(shù)據(jù)顯示,鹽城市常住人口約為821萬(wàn)人,用科學(xué)記數(shù)法表示821萬(wàn)為8.21×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,?OABC的頂點(diǎn)B、C在第一象限,點(diǎn)A的坐標(biāo)為(3,0),D為邊AB的中點(diǎn),反比例函數(shù)y=$\frac{k}{x}$(k>0)的圖象經(jīng)過(guò)點(diǎn)C、D兩點(diǎn),若∠COA=60°,則k的值為4$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,?ABCD中,AD=3cm,AB=5cm,BD⊥AD.點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),它們運(yùn)動(dòng)的速度為1cm/s.設(shè)運(yùn)動(dòng)的時(shí)間為x(s),△CPQ的面積為y(cm2),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)A時(shí),P,Q都停止運(yùn)動(dòng).
(1)若∠PCD=∠QCB時(shí),求x的值;
(2)求y與x的函數(shù)關(guān)系式;
(3)若4≤y≤5.5時(shí),請(qǐng)直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:|-2|-(2016-π)0+4sin45°-$\sqrt{8}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三角形ABC中,點(diǎn)O是AC邊上一動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠ACD的平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF會(huì)變成矩形?并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形,AB與EC相交于點(diǎn)P,與EF相交于點(diǎn)D,若BC=2,AE=$\sqrt{6}$,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.巡洋艦完成某海域巡航任務(wù)返回基地補(bǔ)給,同時(shí)海警船前往相同海域執(zhí)怯(巡洋艦與海警船始終在同一航線上航行),巡洋艦返回基地修整5小時(shí)后立即按原路原速返回,如圖是巡洋艦與海警船離各自出發(fā)地的路程y(單位:海里)與海警船航行時(shí)間x(單位:時(shí))的承數(shù)圖象.
請(qǐng)根據(jù)圖象信息解答列問(wèn)題:
(1)分別求出巡洋艦與海警船的航行速度;
(2)求出巡洋艦返回時(shí)的函數(shù)解析式,并寫出自變量x的取俏范圍;
(3)請(qǐng)直接寫出巡洋艦與海警船在途中相遇的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案