【題目】如圖,在平行四邊形ABCD中,將四邊形折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,折痕為BF.

1)求證:四邊形ABEF為菱形;

2)連接ACEF于點(diǎn)P, CD=2CE,SPCE=2,求PAF的面積.

【答案】1)見(jiàn)解析;(2)面積為8

【解析】

1)依據(jù)條件可得ABBEAFEF,即可得到四邊形ABEF是菱形;

2)首先求出AF2CE,然后依據(jù)AFCE,可得△PCE∽△PAF,進(jìn)而得出 =(2=,即可求出結(jié)果.

解:(1)如圖,由折疊可知,ABBE,AFEF,∠1=∠2,
在平行四邊形ABCD中,ADBC,即AFBE
∴∠1=∠3,
∴∠2=∠3,
ABAF,
ABBEAFEF
∴四邊形ABEF是菱形;


2)在平行四邊形ABCD中,CDAB,
CD2CE,AFAB
AF2CE,
AFCE,
∴△PCE∽△PAF,
=(2=
SPAF4×28

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來(lái);

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤(rùn)為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫(xiě)出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說(shuō)明那種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線yx+4x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B

1)求拋物線解析式;

2)點(diǎn)Cm,0)是x軸上異于AO點(diǎn)的一點(diǎn),過(guò)點(diǎn)Cx軸的垂線交AB于點(diǎn)D,交拋物線于點(diǎn)E

①當(dāng)點(diǎn)E在直線AB上方的拋物線上時(shí),連接AE、BE,求SABE的最大值;

②當(dāng)DEAD時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來(lái)的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫(huà)出四邊形TA′B′C′;

(2)寫(xiě)出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中, OBD中點(diǎn),以BC為邊向正方形內(nèi)作等邊BCE,連接并延長(zhǎng)AECDF,連接BD分別交CE,AFG ,H ,下列結(jié)論:①∠CEH=45°;②GF//DE;③2OH+DH=BD;④BG=DG;⑤BEC SBGC=.其中正確的結(jié)論是(

A.①②⑤B.①②④C.①②D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有若干個(gè)除顏色外其余均相同的紅、黃、藍(lán)三種顏色的小球,其中紅球2個(gè),籃球1個(gè),若從中任意摸出一個(gè)球,摸到球是紅球的概率為

1)求袋中黃球的個(gè)數(shù);

2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,求兩次摸到球的顏色是紅色與黃色這種組合(不考慮紅、黃球順序)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小美周末來(lái)到公園,發(fā)現(xiàn)在公園一角有一種守株待兔游戲.游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A,B,C,DE五個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會(huì)是均等的.規(guī)定:①玩家只能將小兔從A,B兩個(gè)出入口放入:②如果小兔進(jìn)入籠子后選擇從開(kāi)始進(jìn)入的出入口離開(kāi),則可獲得一只價(jià)值4元的小兔玩具,否則應(yīng)付費(fèi)3元.

1)請(qǐng)用畫(huà)樹(shù)狀圖的方法,列舉出該游戲的所有可能情況;

2)小美得到小兔玩具的機(jī)會(huì)有多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC≌△DEC,公共頂點(diǎn)為C,BDE上,則有結(jié)論①∠ACD=∠BCE=∠ABD;②∠DAC+DBC180°;③△ADC∽△BEC;④CDAB,其中成立的是( 。

A.①②③B.只有②④C.只有①和②D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,ADBC于點(diǎn)DBC=10cm,AD=8cm.點(diǎn)P從點(diǎn)B出發(fā),在線段BC上以每秒3cm的速度向點(diǎn)C勻速運(yùn)動(dòng),與此同時(shí),垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交ABAC、ADEFH,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P與直線m同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).
1)當(dāng)t=2時(shí),連接DEDF,求證:四邊形AEDF為菱形;
2)在整個(gè)運(yùn)動(dòng)過(guò)程中,問(wèn)所形成的△PEF是否存在最大面積;如果存在請(qǐng)求出,如果不存在說(shuō)明理由.
3)是否存在某一時(shí)刻t,使△PEF為直角三角形?若存在,請(qǐng)求出此時(shí)刻t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案