【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛記錄如下。(單位:km

1)在第幾次記錄時(shí)離A地最遠(yuǎn),并求出最遠(yuǎn)距離。

2)求收工時(shí)距A地多遠(yuǎn)?在A地的什么方向?

3)若每千米耗油0.3升,問(wèn)共耗油多少升?

【答案】1)第五次最遠(yuǎn),最遠(yuǎn)距離為8km;(2)在A地正東1km處;(3)共耗油12.3.

【解析】

1)分別寫(xiě)出各次記錄時(shí)距離A地的距離,然后判斷即可;

2)首先把題目的已知數(shù)據(jù)相加,然后根據(jù)結(jié)果的正負(fù)即可確定方向和相距A多少千米;

3)首先把所給的數(shù)據(jù)的絕對(duì)值相加,然后乘以0.3L,即可求解.

解:(1)第一次距A|-4|=4千米;

第二次:|-4+7|=3千米;

第三次:|-4+7-9|=6千米;

第四次:|-4+7-9+8|=2千米;

第五次:|-4+7-9+8+6|=8千米;

第六次:|-4+7-9+8+6-5|=3千米;

第七次:|-4+7-9+8+6-5-2|=1千米.

∴距A地最遠(yuǎn)的是第5次,最遠(yuǎn)距離為8千米;

2-4+7+-9+8+6+-5+-2=1(千米).

∴收工時(shí)檢修小組在A地東面1千米處.

3)從出發(fā)到收工汽車行駛的總路程:|-4|+|+7|+|-9|+|+8|+|+6|+|-5|+|-2|=41;

從出發(fā)到收工共耗油:41×0.3=12.3(升).

答:從出發(fā)到收工共耗油12.3升.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,,點(diǎn)軸上,將三角形沿軸負(fù)方向平移,平移后的圖形為三角形,且點(diǎn)的坐標(biāo)為.

1)直接寫(xiě)出點(diǎn)的坐標(biāo)為 ;

2)在四邊形中,點(diǎn)從點(diǎn)出發(fā),沿“”移動(dòng),若點(diǎn)的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒,回答下問(wèn)題:

①求點(diǎn)在運(yùn)動(dòng)過(guò)程中的坐標(biāo)(用含的式子表示,寫(xiě)出過(guò)程);

②當(dāng) 秒時(shí),點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

③當(dāng)秒時(shí),設(shè),試問(wèn)之間的數(shù)量關(guān)系能否確定?若能,請(qǐng)用含的式子表式,寫(xiě)出過(guò)程;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣2(k+1)x+k2﹣2k﹣3x軸有兩個(gè)交點(diǎn).

(Ⅰ)求k取值范圍;

(Ⅱ)當(dāng)k取最小整數(shù)時(shí),此二次函數(shù)的對(duì)稱軸和頂點(diǎn)坐標(biāo);

(Ⅲ)將()中求得的拋物線在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象.請(qǐng)你求出新圖象與直線y=x+m有三個(gè)不同公共點(diǎn)時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一個(gè)智能機(jī)器人接到如下指令:從原點(diǎn)O出發(fā),按向右,向上,向右,向下的方向依次不斷移動(dòng),每次移動(dòng)1m.其行走路線如圖所示,第1次移動(dòng)到A1,第2次移動(dòng)到A2,…,第n次移動(dòng)到An.則△OA2A2018的面積是( 。

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線分別與x軸,y軸相交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0)

(1)k的值;

(2)過(guò)線段AB上一點(diǎn)P(不與端點(diǎn)重合)x軸,y軸的垂線,乖足分別為M,N.當(dāng)長(zhǎng)方形PMON的周長(zhǎng)是10時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系(每格的寬度為1)中,已知點(diǎn)A的坐標(biāo)是,點(diǎn)B的坐標(biāo)是,

1)在直角坐標(biāo)平面中畫(huà)出線段AB;

2B點(diǎn)到原點(diǎn)O的距離是 ;

3)將線段AB沿軸的正方向平移4個(gè)單位,畫(huà)出平移后的線段A1BI,并寫(xiě)出點(diǎn)A1、B1的坐標(biāo).

4)求△A1B B1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等邊三角形,、相交于點(diǎn),于點(diǎn),,

(1)求證:;

(2)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)ADE在同一直線上,連接BE,易證△BCE≌△ACD.則

①∠BEC=______°;②線段AD、BE之間的數(shù)量關(guān)系是______.

(2)拓展研究:

如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)AD、E在同一直線上,若AE=15,DE=7,求AB的長(zhǎng)度.

(3)探究發(fā)現(xiàn):

如圖3,P為等邊△ABC內(nèi)一點(diǎn),且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案