【題目】小明同學在計算一個多邊形(每個內(nèi)角小于180°)的內(nèi)角和時,由于粗心少算一個內(nèi)角,結(jié)果得到的和是2020°,則少算了這個內(nèi)角的度數(shù)為 _________.
【答案】140°
【解析】
n邊形的內(nèi)角和是(n2)180°,少計算了一個內(nèi)角,結(jié)果得2020°,則內(nèi)角和是(n2)180°與2020°的差一定小于180度,并且大于0度.因而可以解方程(n2)180°≥2020°,多邊形的邊數(shù)n一定是最小的整數(shù)值,從而求出多邊形的邊數(shù),內(nèi)角和,進而求出少計算的內(nèi)角.
設多邊形的邊數(shù)是n,
依題意有(n2)180°≥2020°,
解得:n≥,
則多邊形的邊數(shù)n=14;
多邊形的內(nèi)角和是(142)180=2160°;
則未計算的內(nèi)角的大小為2160°2020°=140°.
故答案為:140°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以點A為圓心,AB長為半徑作弧交AC于M,分別以B、M為圓心,以大于BM長為半徑作弧,兩弧相交于點N,射線AN與BC相交于D,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(-2,6),且與x軸交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標是1.
(1)求此一次函數(shù)的解析式;
(2)請直接寫出不等式(k-3)x+b>0的解集;
(3)設一次函數(shù)y=kx+b的圖象與y軸交于點M,點N在坐標軸上,當△CMN是直角三角形時,請直接寫出所有符合條件的點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,延長BG交AC于E、 F為AB上的一點,CF⊥AD于H,下列判斷正確的有( )
A.AD是△ABE的角平分線B.BE是△ABD邊AD上的中線
C.AH為△ABC的角平分線D.CH為△ACD邊AD上的高
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB⊥BC,CD⊥BC,AB=4,CD=2.P為線段BC上的點,設BC=m.
⑴若m=9,
①若△BAP∽△CDP,求線段BP的長;
②若△BAP∽△CPD,求線段BP的長;
⑵試求m為何值時,使得△BAP與△CDP相似的點P有且只有2個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com