(8分)已知OC內(nèi)部的一條射線,MN分別為OAOB上的點,線段OM、ON分別

以20°/s、10°/s的速度繞點O逆時針旋轉(zhuǎn)。

(1)如圖①,若,當OMON逆時針旋轉(zhuǎn)2s時,分別到OM′、ON′處,

的值;

(2)如圖②,若OMON分別在、內(nèi)部旋轉(zhuǎn)時,總有,

的值。

 

 


 

【答案】

解:(1)60°;……………………………………………………………………………4分

(2)設(shè)OM,ON逆時針旋轉(zhuǎn)的時間為,

,得,

化簡得,…………………………………………………………………6分

所以!8分

 

 

 

 

 【解析】略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知C、D是雙曲線,y=
m
x
在第一象限內(nèi)的分支上的兩點,直線CD分別交x軸、y軸精英家教網(wǎng)于A、B兩點,設(shè)C、D的坐標分別是(x1,y1)、(x2,y2),連接OC、OD.
(1)求證:y1<OC<y1+
m
y1
;
(2)若∠BOC=∠AOD=a,tana=
1
3
,OC=
10
,求直線CD的解析式;
(3)在(2)的條件下,雙曲線上是否存在一點P,使得S△POC=S△POD?若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,精英家教網(wǎng)OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點B,點C的坐標;
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標平面內(nèi)是否存在點Q和點P(點P在直線AC上),使以O(shè),P,C,Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浙江一模)如圖1,在平面上,給定了半徑為r的⊙O,對于任意點P,在射線OP上取一點P′,使得OP•OP′=r2,這種把點P變?yōu)辄cP′的變換叫做反演變換,點P與點P′叫做互為反演點,⊙O稱為基圓.
(1)如圖2,⊙O內(nèi)有不同的兩點A、B,它們的反演點分別是A′、B′,則與∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如圖3,⊙O內(nèi)有一點M,請用尺規(guī)作圖畫出點M的反演點M′;(保留畫圖痕跡,不必寫畫法).
(3)如果一個圖形上各點經(jīng)過反演變換得到的反演點組成另一個圖形,那么這兩個圖形叫做互為反演圖形.已知基圓O的半徑為r,另一個半徑為r1的⊙C,作射線OC交⊙C于點A、B,點A、B關(guān)于⊙O的反演點分別是A′、B′,點M為⊙C上另一點,關(guān)于⊙O的反演點為M′.求證:∠A′M′B′=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點一測叢書 八年級數(shù)學(xué) 下。ńK版課標本) 江蘇版 題型:022

已知O是△ABC內(nèi)任意一點,D、E、F分別是OA、OB、OC的中點,若△DEF的周長為8 cm,則△ABC的周長為________,若S△ABC=16 cm2,則S△DEF=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:黃岡難點課課練八年級數(shù)學(xué)下冊(北師大版) 題型:044

閱讀:三角形中位線概念:以三角形兩邊中點為端點的線段叫做三角形的中位線.三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.運用上述概念,定理解答下列問題:

如圖所示,已知O是四邊形ABCD內(nèi)一點,E、F、G、H分別是OA、OB、OC、OD的中點.

(1)求證:

(2)求證:四邊形ABCD∽四邊形EFGH;

(3)若四邊形ABCD的周長為136cm,求四邊形EFGH的周長.

查看答案和解析>>

同步練習冊答案