【題目】如圖,正五邊形ABCDE中.
(1)AC與BE相交于P,求證:四邊形PEDC為菱形;
(2)延長DC、AE交于M點,連BM交CE于N,求證:CN=EP;
(3)若正五邊形邊長為2,直接寫出AD的長為 .
【答案】
(1)證明:如圖1中,
∵五邊形ABCDE是正五邊形,
∴∠BCD=∠BAE=108°,
∵AB=AE,
∴∠ABE=∠AEB=36°,
∴∠CBE=72°,
∴∠DCB+∠CBE=180°,
∴CD∥BE,
同法可證,AC∥DE,
∴∴四邊形PEDC是平行四邊形,
∵CD=DE,
∴四邊形PEDC是菱形
(2)證明:如圖2中,連接AN.
∵∠MCA=∠MAC=72°,
∴MC=MA,
∵BC=BA,
∴BM垂直平分線段AC,
∴NC=NA,
∴∠NCA=∠NAC=∠CEP=36°,
∵∠PAE=∠NEA=72°,
∴∠PEA=∠NAE=36°,
∵AE=EA,
∴△PAE≌△NEA,
∴AN=PE,
∴CN=PE
(3) +1
【解析】(3)解:如圖3中.在AD上取一點W,使得AW=WE.設(shè)AW=x.
∵∠A=∠D=∠AEW=36°,
∴∠DWE=∠DEW=72°,
∴DW=DE=2,
∵∠A=∠A,∠AEW=∠D,
∴△AWE∽△AED,
∴AE2=AWAD,
∴22=x(x+2),
解得x= ﹣1,
∴AD=2+x= +1,
故答案為 +1
(1)根據(jù)正五邊形的性質(zhì)及等腰三角形的性質(zhì)求出∠DCB和∠CBE的度數(shù),就可證明∠DCB+∠CBE=180°,可得CD∥BE,同法可證AC∥ED,由此根據(jù)菱形的判定即可證明。
(2)如圖2中,連接AN,先根據(jù)MC=MA,BC=BA得出BM垂直平分線段AC,得出CN=AN,再證明△PAE≌△NEA,即可解決問題。
(3)如圖3中.在AD上取一點W,使得AW=WE.設(shè)AW=x,相聚已知條件證明△AWE∽△AED,可得AE2=AWAD,構(gòu)建方程即可解決問題。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知一次函數(shù)的圖像與軸相交于點,與軸相交于點.
(1)求點坐標和點坐標;
(2)點是線段上一點,點為坐標原點,點在第二象限,且四邊形為菱形,求點坐標;
(3)在(2)的條件下,點為平面直角坐標系中一點,以、、、為頂點的四邊形是平行四邊形,請直接寫出所有滿足條件的點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個邊長不定的正方形ABCD,它的兩個相對的頂點A,C分別在邊長為1的正六邊形一組平行的對邊上,另外兩個頂點B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點A逆時針旋轉(zhuǎn)90°得到△ADE,BC的延長線交DE于F,連接BD,若BC=2EF,試證明△BED是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D在邊AC上,且BD=DA=BC.
(1)如圖1,填空:∠A=_______.
(2)如圖2,若M為線段AC上的點,過M作直線MH⊥BD于H,分別交直線AB、BC于點N、E.
①求證:△BNE是等腰三角形;
②試寫出線段AN、CE、CD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
①以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A1B1C1;
②將△ABC繞A點逆時針旋轉(zhuǎn)90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com