精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系xoy中,△ABC三個頂點坐標分別為A(-2,4),B(-2,1),C(-5,2).

1)將△ABC繞著O順時針旋轉90°得到△A1B1C1,請畫出△A1B1C1,并寫出A1的坐標;

2)以原點O為位似中心,在第一象限畫出△A1B1C1的位似圖形△A2B2C2,相似比為12,并寫出A2的坐標.

【答案】1)圖詳見解析,A14,2);(2)圖詳見解析,A28,4).

【解析】

(1)直接根據旋轉的性質畫出圖形,即可得出點A的對稱點A1的坐標;

(2)利用位似圖形的性質得出對應點位置進而得出答案.

(1)如圖,△A1B1C1是所畫的圖形,A1(4,2);

(2)如圖,△A2B2C2是所畫的圖形,A2(8,4).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在邊BC上,連結AEEMAE,垂足為E,交CD于點M,AFBC,垂足為F,BHAE,垂足為H,交AF于點N,點PAD上一點,連接CP

1)若DP=2AP=4,CP=CD=5,求△ACD的面積.

2)若AE=BN,AN=CE,求證:AD=CM+2CE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)△ABC和△CDE是兩個等腰直角三角形,如圖1,其中∠ACB=∠DCE90°,連結AD、BE,求證:△ACD≌△BCE

2)△ABC和△CDE是兩個含30°的直角三角形,其中∠ACB=∠DCE90°,∠CAB=∠CDE30°,CDAC,△CDE從邊CDAC重合開始繞點C逆時針旋轉一定角度α0°<α180°);

①如圖2,DEBC交于點F,與AB交于點G,連結AD,若四邊形ADEC為平行四邊形,求的值;

②若AB10,DE8,連結BD、BE,當以點B、D、E為頂點的三角形是直角三角形時,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB90°OA3,OB4,⊙O的半徑為2,點PAB邊上的動點,過點P作⊙O的一條切線PC(點C為切點),則線段PC長的最小值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新冠疫情影響,全國中小學延遲開學,很多學校都開展起了線上教學,市場上對手寫板的需求激增.重慶某廠家準備3月份緊急生產A,B兩種型號的手寫板,若生產20A型號和30B型號手寫板,共需要投入36000元;若生產30A型號和20B型號手寫板,共需要投入34000元.

1)請問生產A,B兩種型號手寫板,每個各需要投入多少元的成本?

2)經測算,生產的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準備用10萬元資金全部生產這兩種手寫板,總獲利w元,設生產了A型號手寫板a個,求w關于a的函數關系式;

3)在(2)的條件下,若要求生產A型號手寫板的數量不能少于B型號手寫板數量的2倍,請你設計出總獲利最大的生產方案,并求出最大總獲利.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據市場調查發(fā)現,銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.

1)請寫出之間的函數表達式;

2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在中,弦,連接、;

1)如圖1,求證:;

2)如圖2,在線段上取點,連接并延長交于點于點,,連接、,,求的正切值;

3)如圖3,在(2)的條件下,于點,,求線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】紙片中,,將它折疊使重合,折痕于點,則線段的長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDF⊥AB,垂足為F,連接DE

1)求證:直線DF⊙O相切;

2)若AE=7,BC=6,求AC的長.

查看答案和解析>>

同步練習冊答案