【題目】已知拋物線 y x2 mx 2m 4m>0).

1)證明:該拋物線與 x 軸總有兩個(gè)不同的交點(diǎn);

2)設(shè)該拋物線與 x 軸的兩個(gè)交點(diǎn)分別為 A,B(點(diǎn) A 在點(diǎn) B 的右側(cè)),與 y 軸交于點(diǎn) C,A,B,三點(diǎn)都在圓 P 上.

①若已知 B-3,0),拋物線上存在一點(diǎn) M 使ABM 的面積為 15,求點(diǎn) M 的坐標(biāo);

②試判斷:不論 m 取任何正數(shù),圓 P 是否經(jīng)過(guò) y 軸上某個(gè)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo),若不是,說(shuō)明理由.

【答案】1)見解析;(2)①M;②是,圓 P經(jīng)過(guò) y 軸上的定點(diǎn)(0,1).

【解析】

1)令y=0,證明,即可解答;

2)①將B-30)代入y x2 mx 2m 4,求出拋物線解析式,求出點(diǎn)A的坐標(biāo),從而得到AB=5,根據(jù)△ABM 的面積為 15,列出方程解答即可;

②求出OA=2OB=m+2,OC=2m+2),判斷出∠OCB=∠OAF,求出tan∠OCB=,即可求出OF=1,即可得出結(jié)論.

解:(1)當(dāng)y=0時(shí),x2 mx 2m 4=0

,

m>0,

,

∴該拋物線與 x 軸總有兩個(gè)不同的交點(diǎn);

2)①將B-3,0)代入y x2 mx 2m 4得:

,解得m=1,

y x2 x 6,

y=0得:x2 x 6=0,解得:,

A2,0),AB=5,

設(shè)Mnn2 n 6

,即

解得:,

M

②是,圓 P經(jīng)過(guò) y 軸上的定點(diǎn)(0,1),理由如下:

y=0,

x2 mx 2m 4=0,即

,

,

A2,0),,

OA=2,OB=m+2

x=0,則y=-2(m+2),

OC=2(m+2),

如圖,∵點(diǎn)A,B,C在圓P上,

∴∠OCB=∠OAF,

Rt△BOC中,

Rt△AOF中,,

OF=1,

∴點(diǎn)F0,1

∴圓 P經(jīng)過(guò) y 軸上的定點(diǎn)(0,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABBC,以AB為直徑的半圓分別交ACBC于點(diǎn)D、E兩點(diǎn),BF⊙O相切于點(diǎn)B,交AC的延長(zhǎng)線于點(diǎn)F

1)求證:DAC的中點(diǎn);

2)若AB12,sinCAE,求CF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于O,過(guò)點(diǎn)CBC的垂線交OD,點(diǎn)EBC的延長(zhǎng)線上,且∠DEC=∠BAC

1)求證:DEO的切線;

2)若ACDE,當(dāng)AB8,CE2時(shí),求O直徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC90°,以AB為直徑的⊙OAC于點(diǎn)D,EBC的中點(diǎn),連接DE、OE

1)判斷DE⊙O的位置關(guān)系并說(shuō)明理由;

2)求證:

3)若tanC,DE2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

1)在扇統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為_____;根據(jù)這次統(tǒng)計(jì)數(shù)據(jù)了解到最受學(xué)生歡迎的溝通方式是______

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對(duì)方聯(lián)系,用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+8x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)CAB上,AC5,CD∥OACDy軸于點(diǎn)D

1)求點(diǎn)D的坐標(biāo);

2)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OA勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿AB勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒(0t3),△PCQ的面積為S,求St之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過(guò)點(diǎn)QRQ⊥ABy軸于點(diǎn)R,連接AD,點(diǎn)EAD中點(diǎn),連接OE,求t為何值時(shí),直線PRx軸相交所成的銳角與∠OED互余.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx+cx軸交于點(diǎn)B40),與y軸交于點(diǎn)C,拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)BC,與x軸的另一個(gè)交點(diǎn)為點(diǎn)A

1)求拋物線的解析式;

2)點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),求四邊形ACPB的面積最大時(shí)點(diǎn)P的坐標(biāo);

3)若點(diǎn)M是拋物線上一點(diǎn),請(qǐng)直接寫出使∠MBCABC的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD的一個(gè)角翻折,使得點(diǎn)D恰好落在BC邊上的點(diǎn)G處,折痕為EF,若EB為∠AEG的平分線,EFBC的延長(zhǎng)線交于點(diǎn)H.下列結(jié)論中:BEF90°;DECH;BEEF;BEG和△HEG的面積相等;,則.以上命題,正確的有(  )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨17.

(1)請(qǐng)問(wèn)1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸?

(2)目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共計(jì)10輛,全部貨物一次運(yùn)完,其中每輛大貨車一次運(yùn)費(fèi)花費(fèi)130元,每輛小貨車一次運(yùn)貨花費(fèi)100元,請(qǐng)問(wèn)貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費(fèi)用?

查看答案和解析>>

同步練習(xí)冊(cè)答案