【題目】如圖,ABCD中,E是AB的中點(diǎn),AB=10,AC=9,DE=12,則△CDE的面積S=

【答案】36
【解析】解:作AF∥DE交CD延長線于F,如圖所示: ∵四邊形ABCD為平行四邊形,
∴AB∥CD,
∴AE∥DF,
∴四邊形AFDE是平行四邊形,
∴AF=DE=12,DF=AE= AB=5,CF=CD+DF=10+5=15,
∵152=122+92 ,
即:CF2=AF2+AC2 ,
∴△ACF是直角三角形,
ABCD的CD邊上的高= = ,
ABCD的面積=AB×高=10× =72.
∴△CDE的面積= ×72=36;
所以答案是36.

【考點(diǎn)精析】利用平行四邊形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(4,﹣2),B(0,2),C(a,﹣a),a為實(shí)數(shù),當(dāng)△ABC的周長最小時,a的值是( )
A.﹣1
B.0
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長線相交于點(diǎn)H.
(1)求證:△BEF≌△CEH;
(2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線相交于點(diǎn)O,將線段OD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D的對應(yīng)點(diǎn)落在BC延長線上的點(diǎn)E處,OE交CD于H,連接DE.

(1)求證:DE⊥BC;
(2)若OE⊥CD,求證:2CEOE=CDDE;
(3)若OE⊥CD,BC=3,CE=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,AD為邊上的高,將△ADC沿直線AC翻折得到△AEC,延長EA交⊙O于點(diǎn)P,連接FC,交AB于N.
(1)求證:∠BAC=∠ABC+∠ACF;
(2)求證:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求點(diǎn)F到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=3,D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A'處,當(dāng)A'E⊥AC時,A'B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A(﹣ ,0)的兩條直線分別交y軸于B、C兩點(diǎn),∠ABO=30°,OB=3OC.

(1)試說明直線AC與直線AB垂直;
(2)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,交AB于點(diǎn)E,過點(diǎn)D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案