【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).

【答案】

【解析】分析: 根據(jù)點DBC的中點,點E、F分別是線段AD及其延長線上,且DE=DF,即可證明四邊形BECF是平行四邊形,然后根據(jù)菱形的判定定理即可作出判斷.

詳解:∵BD=CD,DE=DF,

∴四邊形BECF是平行四邊形,

BEEC時,四邊形BECF是矩形,不一定是菱形;

AB=AC時,∵DBC的中點,

AFBC的中垂線,

BE=CE,

∴平行四邊形BECF是菱形.

③四邊形BECF是平行四邊形,則BFEC一定成立,故不一定是菱形;

故答案是:②

點睛:本題考查了菱形的判定方法,菱形的判別常用三種方法:

①定義;②四邊相等;③對角線互相垂直平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC,ABC=60°,CD平分∠ACBAB于點D,E在線段CD(E不與點C. D重合),且∠EAC=2EBC.

(1)如圖1,若∠EBC=27°,EB=EC,則∠DEB=___°,AEC=___°.

(2)如圖2,①求證:AE+AC=BC;

②若∠ECB=30°,且AC=BE,求∠EBC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,c是△ABC的三邊長,且滿足a2+2ab=c2+2bc,試判斷這個三角形的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ACBD,請先作圖再解決問題.

(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)

①作BE平分∠ABDAC于點E;

②在BA的延長線上截取AF=BA,連接EF;

(2)判斷△BEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=OAD=90°,點O是△ABC內(nèi)的一點,∠BOC=130°

(1)由已知條件可知哪兩個三角形全等__________,理由_________.

(2)求∠DCO的大小.

(3)設∠AOB=α,那么當α為多少度時,△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,

1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)

2)寫出∠DAE與∠C-B的數(shù)量關系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的直角頂點Ax軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),且∠B=60°,點P為斜邊OB上的一個動點,則PA+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小英與她的父親,母親計劃外出旅游,初步選擇了延安、西安、漢中、安康四個城市,由于時間倉促,他們只能去其中一個城市,到底去哪一個城市三人意見不統(tǒng)一,在這種情況下,小英父親建議,用小英學過的摸球游戲來決定,規(guī)則如下:

在一個不透明的袋子中裝一個紅球(延安)、一個白球(西安)、一個黃球(漢中)和一個黑球(安康),這四個球除顏色的不同外,其余完全相同;

小英父親先將袋中球搖勻,讓小英從袋中隨機摸出一球,父親記錄下其顏色,并將這個球放回袋中搖勻;然后讓小英母親從袋中隨機摸出一球,父親記錄下它的顏色;

若兩人所摸出球的顏色相同,則去該球所表示的城市旅游。否則,前面的記錄作廢,按規(guī)則重新摸球,直到兩人所摸出的球的顏色相同為止。

按照上面的規(guī)則,請你解答下列問題:

(1)已知小英的理想旅游城市是西安,小英和母親隨機各摸球一次,均摸出白球的概率是多少?

(2)已知小英母親的理想旅游城市是漢中,小英和母親隨機各摸球一次,至少有一人摸出黃球的概率是多少?

查看答案和解析>>

同步練習冊答案