【題目】如圖1,點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn)(點(diǎn)不重合),分別以為邊向線(xiàn)段的同一側(cè)作正和正.

1)請(qǐng)你判斷有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

2)連接,相交于點(diǎn),設(shè),那么的大小是否會(huì)隨點(diǎn)的移動(dòng)而變化?請(qǐng)說(shuō)明理由;

3)如圖2,若點(diǎn)固定,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角小于),此時(shí)的大小是否發(fā)生變化?(只需直接寫(xiě)出你的猜想,不必證明)

【答案】1,見(jiàn)解析;(2的大小不會(huì)隨點(diǎn)的移動(dòng)而變化,見(jiàn)解析;(3)此時(shí)的大小不會(huì)發(fā)生改變,始終等于.

【解析】

1)先根據(jù)SAS證明,再根據(jù)全等三角形的性質(zhì)即得結(jié)論;

2)如圖3,根據(jù)可得,再在△APFCQF中用三角形內(nèi)角和定理即可證得結(jié)論;

3)旋轉(zhuǎn)的過(guò)程中,(2)中的兩個(gè)三角形的全等關(guān)系不變,因而角度不會(huì)變化.

解:(1.

理由如下:

因?yàn)?/span>是等邊三角形,

所以,

又因?yàn)?/span>是等邊三角形,

所以

又因?yàn)?/span>三點(diǎn)在同一直線(xiàn)上,

所以.

所以(SAS).

所以.

2的大小不會(huì)隨點(diǎn)的移動(dòng)而變化。

理由如下:如圖3,因?yàn)?/span>,

所以,

因?yàn)?/span>,,

又因?yàn)?/span>,

所以.

3)因?yàn)樾D(zhuǎn)的過(guò)程中,(2)中的兩個(gè)三角形的全等關(guān)系不變,所以角度不會(huì)變化.

所以的大小不會(huì)發(fā)生改變,始終等于.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)PAD 邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、QB四點(diǎn)組成平行四邊形的次數(shù)有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)專(zhuān)賣(mài)店經(jīng)銷(xiāo)某種型號(hào)的汽車(chē).已知該型號(hào)汽車(chē)的進(jìn)價(jià)為萬(wàn)元/輛,經(jīng)銷(xiāo)一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車(chē)售價(jià)定為萬(wàn)元/輛時(shí),平均每周售出輛;售價(jià)每降低萬(wàn)元,平均每周多售出輛.

1)當(dāng)售價(jià)為萬(wàn)元/輛時(shí),平均每周的銷(xiāo)售利潤(rùn)為_(kāi)__________萬(wàn)元;

2)若該店計(jì)劃平均每周的銷(xiāo)售利潤(rùn)是萬(wàn)元,為了盡快減少庫(kù)存,求每輛汽車(chē)的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=12cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度沿AC勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)以同樣的速度沿CB的延長(zhǎng)線(xiàn)方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,過(guò)點(diǎn)PPEAB于點(diǎn)E,連接PQAB于點(diǎn)D.

⑴當(dāng)t為何值時(shí),CPQ為直角三角形?

⑵求DE的長(zhǎng).

⑶取線(xiàn)段BC的中點(diǎn)M,連接PM,將CPM沿直線(xiàn)PM翻折,得到CPM,連接AC,,當(dāng)t= 時(shí),AC,的值最小,最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,過(guò)B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過(guò)D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程3x2-(a-3)xa=0(a>0).

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程有一個(gè)根大于2,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市青山綠水行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.

(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;

(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.5萬(wàn)元,社區(qū)要使這次綠化的總費(fèi)用不超過(guò)40萬(wàn)元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是一輛自行車(chē)的側(cè)面示意圖.已知車(chē)輪直徑為65 cm,車(chē)架中AC的長(zhǎng)為42 cm,座桿AE的長(zhǎng)為18 cm,點(diǎn)E,A,C在同一條直線(xiàn)上,后軸軸心B與中軸軸心C所在直線(xiàn)BC與地面平行,∠C73°,求車(chē)座E到地面的距離EF(結(jié)果精確到l cm,參考數(shù)據(jù):sin 73°≈0.96,cos 73°≈0.29,tan 73°≈3.27)

查看答案和解析>>

同步練習(xí)冊(cè)答案