【題目】如圖1,點A是線段BC上一點,△ABD和△ACE都是等邊三角形.
(1)連結BE,CD,求證:BE=CD;
(2)如圖2,將△ABD繞點A順時針旋轉得到△AB′D′.
①當旋轉角為 度時,邊AD′落在AE上;
②在①的條件下,延長DD’交CE于點P,連接BD′,CD′.當線段AB、AC滿足什么數(shù)量關系時,△BDD′與△CPD′全等?并給予證明.
【答案】解:(1)見詳解;(2)① 60;②當AC=2AB時,△BDD′與△CPD′全等.理由見詳解.
【解析】
(1)根據(jù)等邊三角形的性質可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“邊角邊”證明△BAE和△DAC全等,根據(jù)全等三角形對應邊相等即可得證;
(2)①求出∠DAE,即可得到旋轉角度數(shù);
②當AC=2AB時,△BDD′與△CPD′全等.根據(jù)旋轉的性質可得AB=BD=DD′=AD′,然后得到四邊形ABDD′是菱形,根據(jù)菱形的對角線平分一組對角可得∠ABD′=∠DBD′=30°,菱形的對邊平行可得DP∥BC,根據(jù)等邊三角形的性質求出AC=AE,∠ACE=60°,然后根據(jù)等腰三角形三線合一的性質求出∠PCD′=∠ACD′=30°,從而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角邊角”證明△BDD′與△CPD′全等.
(1)證明:∵△ABD和△ACE都是等邊三角形
∴AB=AD,AE=AC,∠BAD=∠CAE=60°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠DAC,
在△BAE和△DAC中,
,
∴△BAE≌△DAC(SAS),
∴BE=CD;
(2)①∵∠BAD=∠CAE=60°,
∴∠DAE=180°60°×2=60°,
∵邊AD′落在AE上,
∴旋轉角=∠DAE=60°.
故答案為:60.
②當AC=2AB時,△BDD′與△CPD′全等.
理由如下:由旋轉可知,AB′與AD重合,
∴AB=BD=DD′=AD′,
∴四邊形ABDD′是菱形,
∴∠ABD′=∠DBD′=∠ABD=12×60°=30°,DP∥BC,
∵△ACE是等邊三角形,
∴AC=AE,∠ACE=60°,
∵AC=2AB,
∴AE=2AD′,
∴∠PCD′=∠ACD′=∠ACE=×60°=30°,
又∵DP∥BC,
∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,
在△BDD′與△CPD′中,
,
∴△BDD′≌△CPD′(ASA).
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結論:①ac>0;②b2>4ac;③4a+2b+c>0;④3a+c>0.其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax 2+bx+c的頂點為M(1,4),與x軸的右交點為A,與y軸的交點為B,點C與點B關于拋物線的對稱軸對稱,且S△ABC =3.
(1)求拋物線的解析式;
(2)點D是y軸上一點,將點D繞C點逆時針旋轉90°得到點E,若點E恰好落在拋物線上,請直接寫出點D的坐標;
(3)設拋物線的對稱軸與直線AB交于點F,問:在x軸上是否存在點P,使得以P、A、F為頂點的三角形與△ABC相似?若存在,求點P的坐標;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( ).
A. “打開電視機,正在播放《動物世界》”是必然事件
B. 某種彩票的中獎概率為,說明每買1000張,一定有一張中獎
C. 拋擲一枚質地均勻的硬幣一次,出現(xiàn)正面朝上的概率為
D. 想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),請解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標是(﹣,).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工程上常用鋼珠來測量零件上小孔的直徑.假設鋼珠的直徑是12毫米,測得鋼珠頂端離零件表面的距離為9毫米,如圖所示,則這個小孔的直徑AB是_________毫米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】好山好水好江山,石拱橋在江山處處可見,小明要幫忙船夫計算一艘貨船是否能夠安全通過一座圓弧形的拱橋,現(xiàn)測得橋下水面寬度16m時,拱頂高出水平 面4m,貨船寬12m,船艙頂部為矩形并高出水面3m。
(1)請你幫助小明求此圓弧形拱橋的半徑;
(2)小明在解決這個問題時遇到困難,請你判斷一下,此貨船能順利通過這座拱橋嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8,BC=6,矩形在直線l上繞其右下角的頂點B向右旋轉90°至圖①位置,再繞右下角的頂點繼續(xù)旋轉90°至圖②位置,依此類推,這樣連續(xù)旋轉99次后頂點A在整個旋轉過程中所經(jīng)過的路程之和是( )
A.288πB.294πC.300πD.396π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com