【題目】為有效解決交通擁堵問題,營造路網(wǎng)微循環(huán),某市決定對一條長的道路進(jìn)行改造拓寬.為了盡量減輕施工對城市交通造成的影響,實際施工時,每天改造道路的長度比原計劃增加,結(jié)果提前天完成任務(wù),求實際每天改造道路的長度與實際施工天數(shù).嘉琪同學(xué)根據(jù)題意列出方程,則方程中未知數(shù)所表示的量是(

A.實際每天改造道路的長度B.原計劃每天改造道路的長度

C.原計劃施工的天數(shù)D.實際施工的天數(shù)

【答案】B

【解析】

嘉琪所列方程是依據(jù)相等關(guān)系:原計劃所用時間-實際所用時間=6,可知方程中未知數(shù)x所表示的量.

設(shè)原計劃每天鋪設(shè)管道x米,則實際每天改造管道(1+10%x,
根據(jù)題意,可列方程:

所以嘉琪所列方程中未知數(shù)x所表示的量是原計劃每天改造管道的長度,
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ABC90°,∠ACB30°,將△ABC繞點C順時針旋轉(zhuǎn)一定的角度α得到△DEC,點A、B的對應(yīng)點分別是DE

1)當(dāng)點E恰好在AC上時,如圖1,求∠ADE的大;

2)若α60°時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一盛有不足半杯水的圓柱形玻璃水杯擰緊杯蓋后放倒,水平放置在桌面上,水杯的底面如圖所示,已知水杯內(nèi)徑(圖中小圓的直徑)是8cm,水的最大深度是2cm,則杯底有水部分的面積是( 。

A.π4cm2B.π8cm2

C.π4cm2D.π2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(03),∠ABO30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為(  )

A. (,)B. (2)C. (,)D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6/件,該產(chǎn)品在正式投放市場前通過代銷點進(jìn)行了為期一個月(30)的試銷售,售價為8/件,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象(如圖),圖中的折線ODE表示日銷售量y()與銷售時間x()之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時間每增加1天,日銷售量減少5件.

(1)24天的日銷售量是 件,日銷售利潤是 元;

(2)yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析式為,且軸交于點,直線經(jīng)過定點,直線交于點

1)求直線的解析式;

2)求的面積;

3)在軸上是否存在一點,使的周長最短?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點 M 的坐標(biāo)為(43),點 M 關(guān)于直線 ly=﹣x+b 的對稱點落在坐標(biāo)軸上,則 b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市在黨中央實施精準(zhǔn)扶貧政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額﹣生產(chǎn)費用)

(1)請直接寫出yx以及zx之間的函數(shù)關(guān)系式;

(2)求wx之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,BAADDC,點ECB延長線上,BEAD,連接ACAE

求證:AEAC;

ABAC FBC的中點,試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案